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Memory isolation is a cornerstone security feature in 
the construction of every modern computer system. 
Allowing the simultaneous execution of multiple 
mutually distrusting applications at the same time on 
the same hardware, it is the basis of enabling secure 
execution of multiple processes on the same machine 
or in the cloud. The operating system is in charge of 
enforcing this isolation, as well as isolating its own 
kernel memory regions from other users.

Given its central role on modern processors, the 
isolation between the kernel and user processes is 
backed by the hardware, in the form of a supervisor 
bit that determines whether code in the current 

context can access memory pages of 
the kernel. The basic idea is that this 
bit is set only when entering kernel 
code and it is cleared when switching 
to user processes. This hardware fea-
ture allows operating systems to map 
the kernel into the address space of ev-
ery process, thus supporting very effi-
cient transitions from the user process 
to the kernel (for example, for interrupt 
handling) while maintaining the secu-
rity of the kernel memory space.

This article presents Meltdown, a 
novel attack that exploits a vulnerabil-
ity in the way the processor enforces 
memory isolation.

Root cause. At a high level, the root 
cause of Meltdown’s simplicity and 
strength are side effects caused by out-
of-order execution, which is an impor-
tant performance feature of modern 
processors designed to overcome la-
tencies of busy execution units (for ex-
ample, a memory fetch unit waiting for 
data arrival from memory). Rather than 
stalling the execution, modern proces-
sors run operations out-of-order, that 
is, they look ahead and schedule sub-
sequent operations on available execu-
tion units of the core.

While this feature is beneficial for 
performance, from a security perspec-
tive, one observation is particularly 
significant. Some CPUs allow an un-
privileged process to load data from a 
privileged (kernel or physical) address 
into a temporary register, delaying ex-
ception handling to later stages. The 
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the design of modern CPUs must be 
modified to fully mitigate them. 
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ting the data via a covert channel, for 
example, by modulating the state of 
the cache. As the CPU’s internal state 
is not fully reverted, the receiving end 
of the covert channel can later recover 
the transmitted value, for example, by 
probing the state of the cache.

Threat model. To mount Meltdown, 
the adversary needs the ability to exe-
cute code on a vulnerable machine. Ex-
ecuting code can be achieved through 
various means, including hosting in 
cloud services, apps in mobile phones, 
and JavaScript code in website. Vulner-
able machines include personal com-
puters and servers featuring a large 

range of processors (see the accompa-
nying table). Furthermore, while coun-
termeasures have been introduced to 
both operating systems and browsers, 
these only became available after the 
disclosure of Meltdown.

Impact. Three properties of Melt-
down combine to have a devastating ef-
fect on the security of affected systems. 
First, exploiting a hardware vulnerabil-
ity means the attack does not depend 
on specific vulnerabilities in the soft-
ware. Thus, the attack is generic and, at 
the time of discovery, affected all exist-
ing versions of all major operating sys-
tems. Second, because the attack only 
depends on the hardware, traditional 
software-based protections, such as 
cryptography, operating system autho-
rization mechanisms, or antivirus soft-
ware, are powerless to stop the attack. 
Last, because the vulnerability is in the 
hardware, fixing the vulnerability re-
quires replacing the hardware. While 
software-based countermeasures for 
Meltdown have been developed, these 
basically avoid using the vulnerable 
hardware feature, incurring a signifi-
cant performance hit.

Evaluation. We evaluated the attack 
on modern desktop machines and 
laptops, as well as servers and clouds. 
Meltdown is effective against all major 
operating systems (including Linux, 
Android, OS X and Windows), allow-
ing an unprivileged attacker to dump 
large parts of the physical memory. As 
the physical memory is shared among 
all other tenants running on the same 
hardware, this may include the physi-
cal memory of other processes, the ker-
nel, and in the case of paravirtualiza-
tion, the memory of the hypervisor or 
other co-located instances. While the 
performance heavily depends on the 
specific machine—for example, pro-
cessor speed, TLB and cache sizes, and 
DRAM speed—we can dump arbitrary 
kernel and physical memory at a speed 
of 3.2KiB/s to 503KiB/s.

Countermeasures. While not origi-
nally intended to be a countermeasure 
for Meltdown, KAISER,6 developed ini-
tially to prevent side-channel attacks 
targeting KASLR, also protects against 
Meltdown. Our evaluation shows that 
KAISER prevents Meltdown to a large 
extent. Consequently, we stress it is of 
utmost importance to deploy KAISER 
on all operating systems immediately. 

CPU even allows performing further 
computations based on this register 
value, such as using it as an index to 
an array access. When the CPU finally 
realizes the error, it reverts the results 
of this incorrect transient execution, 
discarding any modifications to the 
program state (for example, registers). 
However, we observe that out-of-order 
memory lookups influence the internal 
state of the processor, which in turn 
can be detected by the program. As a 
result, an attacker can dump the entire 
kernel memory by reading privileged 
memory in an out-of-order execution 
stream, and subsequently transmit-

Summary of processors affected by Meltdown.

Arch. Description

x86 Most Intel and VIA processors are vulnerable. AMD processors 
are not.

Arm Cortex-A75 and SoCs based on it are vulnerable. Some proprietary 
Arm-based rocessors, including some Apple and Samsung cores, 
are also vulnerable. Arm Cortex-A72, Cortex-A57 and Cortex-A15 
are vulnerable to a Variant 3a of Meltdown. Other Arm cores are 
not known to be vulnerable.

Power All IBM Power architecture processors are vulnerable.

z/Arch. IBM z10, z13, z14, z196, zEC12 are vulnerable.

SPARC V9-based SPARC systems are not vulnerable. Older SPARC proces-
sors may be impacted.

Itanium Itanium processors are not vulnerable.

Figure 1. On Unix-like 64-bit systems, a physical address (blue) which is mapped accessible 
to the user space is also mapped in the kernel space through the direct mapping.
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Figure 2. If an executed instruction causes an exception, control flow is diverted to an  
exception handler. Subsequent instruction may already have been partially executed, but 
not retired. Architectural effects of this transient execution are discarded.

Exception
Handler

E
xe

cu
te

d
Tr

an
si

en
t

E
xe

cu
tio

n



JUNE 2020  |   VOL.  63  |   NO.  6  |   COMMUNICATIONS OF THE ACM     49

contributed articles

its performance. Thus, the microarchi-
tectural state of the processor depends 
on prior software execution and affects 
its future behavior, creating the poten-
tial for untraditional communication 
channels.5

Out-of-order execution. Out-of-or-
der execution10 is an optimization 
technique that increases the utiliza-
tion of the execution units of a CPU 
core. Instead of processing instruc-
tions strictly in sequential program 
order, waiting for slow instructions to 
complete before executing subse-
quent instructions, the CPU executes 
them as soon as all required resources 
are available. While the execution unit 
of the current operation is occupied, 
other execution units can run ahead. 
Hence, instructions execute in paral-
lel as long as their results follow the 
architectural definition.

Address spaces. To isolate process-
es from each other, CPUs support vir-
tual address spaces where virtual ad-
dresses are translated to physical 
addresses. The operating system ker-
nel plays a key role in managing the ad-
dress translation for processes. Conse-
quently, the memory of the kernel 
must also be protected from user pro-
cesses. Traditionally, in segmented ar-
chitectures,10 the kernel had its own 
segments that were not accessible to 
user processes.

In modern processors, a virtual ad-
dress space is divided into a set of pag-
es that can be individually mapped to 
physical memory through a multilevel 
page translation table. In addition to 
the virtual to physical mapping, the 
translation tables also specify protec-
tion properties that specify the allowed 
access to the mapped pages. These 
properties determine, for example, 
whether pages are readable, writable, 
and executable. A pointer to the cur-
rently used translation table is held in a 
dedicated CPU register. During a con-
text switch, the operating system up-
dates this register to point to the trans-
lation table of the next process, thereby 
implementing a per-process virtual ad-
dress space, allowing each process to 
only reference data that belongs to its 
virtual address space. To reduce the 
cost of consulting the translation ta-
bles, the processor caches recent trans-
lation results in the Translation Looka-
side Buffer (TLB).

Fortunately, during the responsible 
disclosure window, the three major op-
erating systems (Windows, Linux, and 
OS X) implemented variants of KAISER 
and recently rolled out these patches.

Spectre attacks and follow-up works. 
Meltdown was published simultane-
ously with the Spectre Attack,17 which 
exploits a different CPU performance 
feature, called speculative execution, 
to leak confidential information. Melt-
down is distinct from Spectre in several 
ways, notably that Spectre requires tai-
loring to the victim process’s software 
environment but applies more broadly 
to CPUs and is not mitigated by KAI-
SER. Since the publication of Melt-
down and Spectre, several prominent 
follow-up works exploited out of order 
and speculative execution mecha-
nisms to leak information across other 
security domains.1,14,16,18,22,24,25,27 See 
Canella et al.4 for a survey.

At the time of writing, Microarchi-
tectural Data Sampling (MDS) is the 
most recent line of attacks,3,21,26 which 
exploit speculative and out-of-order 
execution in order to leak information 
across nearly all possible security do-
mains. Finally, while some of the at-
tacks discussed in this section have 
been mitigated, additional work is re-
quired to mitigate others as well as fu-
ture yet-to-be discovered CPU vulner-
abilities.

Background
Here, we provide background on out-
of-order execution, address transla-
tion, and cache attacks.

The microarchitecture. The Instruc-
tion Set Architecture (ISA) of a proces-
sor is the interface it provides to the 
software it executes. The ISA is typically 
defined as some state, which mostly 
consists of the contents of the architec-
tural registers and the memory, and a 
set of instructions that operate on this 
state. The implementation of this in-
terface consists of multiple compo-
nents, collectively called the microar-
chitecture. The microarchitecture 
maintains a state that extends the ar-
chitectural state of the processor as de-
fined by the ISA, adding further infor-
mation required for the operation of 
the microarchitectural components. 
While changes in the microarchitec-
tural state do not affect the logical be-
havior of the program, they may affect 

Our evaluation 
shows that KAISER 
prevents Meltdown 
to a large extent. 
Consequently, 
we stress it is of 
utmost importance 
to deploy KAISER 
on all operating 
systems 
immediately.
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calls,29 user input,9 and kernel address-
ing information.7

A special use case of a side-channel 
attack is a covert channel. Here, the at-
tacker controls both the part that in-
duces the side effect and the part that 
measures the side effect. This can be 
used to leak information from one se-
curity domain to another while bypass-
ing any boundaries existing on the ar-
chitectural level or above. Both 
Prime+Probe and Flush+Reload have 
been used in high-performance covert 
channels.8

A Toy Example
We start with a toy example, which il-
lustrates that out-of-order execution 
can change the microarchitectural 
state in a way that leaks information.

Triggering out-of-order execution. 
Figure 2 illustrates a simple code se-
quence first raising an (unhandled) 
exception and then accessing an array. 
The exception can be raised through 
any mean, such as accessing an inval-
id memory address, performing a priv-
ileged instruction in user code, or 
even division by zero. An important 
property of an exception, irrespective 
of its cause, is that the control flow 
does not follow program order to the 
code following the exception. Instead, 
it jumps to an exception handler in 
the operating system kernel. Thus, the 
code in our toy example is expected 
not to access the array because the ex-
ception traps to the kernel and termi-
nates the application before the ac-
cess is performed. However, we note 
the access instruction after the excep-
tion has no data dependency on the 
trapping instruction. Hence, due to 
out-of-order execution, the CPU might 
execute the access before triggering 
the exception. When the exception is 
triggered, instructions executed out of 
order are not retired and, thus, never 
have architectural effects. However, 
instructions executed out-of-order do 
have side-effects on the microarchi-
tecture. In particular, the contents of 
the memory accessed after the excep-
tion in Figure 2 are fetched into a reg-
ister and also stored in the cache. 
When the out-of-order execution is re-
verted (that is, the register and memo-
ry contents are never committed), the 
cached memory contents survive re-
version and remain in the cache for 

some time. We can now leverage a mi-
croarchitectural side-channel attack, 
such as Flush+Reload,28 to detect 
whether a specific memory location is 
cached, thereby making the affected 
microarchitectural state visible.

Observing out-of-order execution. The 
code in Figure 2 accesses a memory ad-
dress that depends on the value of data. 
As data is multiplied by 4,096, data ac-
cesses to array are scattered over the ar-
ray with a distance of 4KiB (assuming a 
1B data type for array). Thus, there is an 
injective mapping from the value of 
data to a memory page, that is, differ-
ent values for data never result in ac-
cesses to the same page. Consequently, 
if a cache line of a page is cached, we 
can determine the value of data.

Figure 3 shows the result of 
Flush+Reload measurements iterating 
over all of the pages of array, after exe-
cuting the out-of-order snippet in Fig-
ure 2 with data = 84. Although the array 
access should not have happened due 
to the exception, we can clearly see that 
the index which would have been ac-
cessed is cached. Iterating over all pag-
es (for example, in the exception han-
dler) shows a cache hit for page 84 only. 
This demonstrates that instructions 
that are only executed out-of-order but 
are never retired, change the microar-
chitectural state of the CPU. Later, we 
show how we modify this toy example 
to leak an inaccessible secret.

Building Blocks of the Attack
The toy example noted earlier illus-
trates that side effects of out-of-order 
execution can modify the microar-
chitectural state to leak information. 
While the code snippet reveals the data 
value passed to a cache side channel, 
we want to show how this technique 
can be leveraged to leak otherwise in-
accessible secrets. Here, we want to 
generalize and discuss the necessary 
building blocks to exploit out-of-order 
execution for an attack.

Overview of Meltdown. Assume an 
adversary that targets a secret value 
which is kept somewhere in physical 
memory. The full Meltdown attack 
leaks this value using two building 
blocks, as illustrated in Figure 4. The 
first building block of Meltdown is to 
make the CPU execute one or more 
transient instructions, that is, instruc-
tions that do not occur during regular 

While the TLB reduces the cost of 
address translation, its contents must 
be flushed when changing address 
space. Modern systems include the 
kernel memory within the address 
space of every process to avoid the cost 
of flushing the TLB on every switch be-
tween the user program and the kernel. 
Following an idea first introduced in 
the VAX/VMS system, the page table 
also includes a protection bit that indi-
cates whether the page belongs to the 
kernel or to the user program. Kernel 
pages are only accessible when the pro-
cessor executes with high privileges, 
that is, when executing the kernel. 
Thus, user processes are not able to 
read or to modify the contents of the 
kernel memory.

To aid in memory management, 
many modern operating systems di-
rectly map (a part of) the physical 
memory in the kernel’s part of the vir-
tual address space at a fixed location m 
(see Figure 1). A physical address p can 
then be assessed through virtual ad-
dress p + m.

Cache attacks. To speed-up memory 
accesses and address translation, the 
CPU contains small memory buffers, 
called caches, that store frequently 
used data. CPU caches hide slow mem-
ory accesses by buffering frequently 
used data in smaller and faster internal 
memory. Modern CPUs have multiple 
levels of caches that are either private 
per core or shared among them. Ad-
dress space translation tables are also 
stored in memory and, thus, also 
cached in the regular caches.

Cache side-channel attacks exploit 
the timing differences introduced by 
the caches. Several cache attack tech-
niques have been proposed and dem-
onstrated in the past, including 
Prime+Probe19 and Flush+Reload.28 
Flush+Reload attacks work on a single 
cache line granularity. These attacks 
exploit the shared, inclusive last-level 
cache. An attacker frequently flushes a 
targeted memory location using the 
clflush instruction. By measuring the 
time it takes to reload the data, the at-
tacker determines whether the memo-
ry location was loaded into the cache 
by another process since the last 
clflush. The Flush+Reload attack has 
been used for attacks on various com-
putations, for example, cryptographic 
algorithms,28 Web server function 
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an exception. See Kocher et al.17 for fur-
ther details on speculative execution 
and transient instructions.

Building a covert channel. The sec-
ond building block of Meltdown is lift-
ing the microarchitectural state, which 
was changed by the transient instruc-
tion sequence, into an architectural 
state (as shown in Figure 4). The tran-
sient instruction sequence can be seen 
as the transmitting end of a microar-
chitectural covert channel. The receiv-
ing end of the covert channel receives 
the microarchitectural state change 
and deduces the secret from the state. 
Note the receiver is not part of the tran-
sient instruction sequence and can be 
a different thread or process, for exam-
ple, the parent process in the fork-and-
crash approach.

A cache-based covert channel. Previ-

execution. The second building block 
of Meltdown is to transfer the microar-
chitectural side effect of the transient 
instruction sequence to an architectur-
al state to further process the leaked 
secret. Later, we describe methods to 
lift a microarchitectural side effect to 
an architectural state using covert 
channels.

Executing transient instructions. 
The first building block of Meltdown is 
the execution of transient instructions, 
which are executed out-of-order and 
leave measurable side effects. We focus 
on transient instructions that follow an 
illegal access to addresses that are 
mapped within the attacker’s process 
such as user-inaccessible kernel space 
addresses. In general, accessing such 
user-inaccessible addresses triggers an 
exception, which typically terminates 
the application. Because we want to 
measure the microarchitectural state 
of the processor after the transient ex-
ecution, we want to avoid terminating 
the process. We now present several 
approaches the attacker can use to 
cope with the exception.

Fork-and-crash. A trivial approach is 
to fork the attacking application before 
accessing the invalid memory location 
that terminates the process and only 
access the invalid memory location in 
the child process. The CPU executes 
the transient instruction sequence in 
the child process before crashing. The 
parent process can then recover the se-
cret by probing the microarchitectural 
state.

Exception handling. Next, it is also 
possible to install a signal handler that 
is executed when a certain exception 
occurs, for example, a segmentation 
violation. This allows the attacker to is-
sue the instruction sequence and pre-
vent the application from crashing, re-
ducing the overhead as no new process 
has to be created.

Exception suppression via TSX. An 
alternative approach to deal with ex-
ceptions is to prevent them from be-
ing raised in the first place. Intel’s 
Transactional Synchronization Exten-
sions (TSX) defines the concept of 
transaction, which is a sequence of in-
structions that execute atomically, 
that is, either all of the instructions in 
a transaction are executed, or none of 
them is. If an instruction within the 
transaction fails, already executed in-

structions are reverted, but no excep-
tion is raised. By wrapping the code in 
Figure 5 in such a TSX transaction, the 
exception is suppressed. Yet, the mi-
croarchitectural effects of transient 
execution are still visible. Because 
suppressing the exception is signifi-
cantly faster than trapping into the 
kernel for handling the exception, and 
continuing afterwards, this results in 
a higher channel capacity.

Exception suppression via branch pre-
dictor. Finally, speculative execution is-
sues instructions that might not occur 
in the program order due to a branch 
misprediction. Thus, by forcing a mis-
prediction that speculatively executes 
the invalid memory access, we can 
achieve transient execution of both the 
invalid memory access and the instruc-
tions following it, without triggering 

Figure 4. The Meltdown attack uses exception handling or suppression, for example, TSX, to 
run a series of transient instructions. 

Exception Handling/Suppression

Transient Instructions

Microarchitectual State Change

Accessed

Recovery
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Recovered Secret
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Section 4.1

Section 4.2

These transient instructions obtain a (persistent) secret value and change  
the microarchitectural state of the processor based on this secret value. This forms  
the sending part of a microarchitectural covert channel. The receiving side reads  
the microarchitectural state, lifts it to architectural, and recovers the secret value.

Figure 5. The core of Meltdown. 

An inaccessible kernel address is moved to a register, raising an exception.  
Subsequent instructions are executed out of order before the exception is raised,  
leaking the data from the kernel address through the indirect memory access.

1 mov al, byte [rcx] ; rcx = kernel address
2 shl rax, Øxc
3 mov rbx, qword [rbx + rax] ; rbx = probe array

Figure 3. Even if a memory location is only accessed during out-of-order execution,  
it remains cached. Iterating over the 256 pages of array shows one cache hit, exactly on 
the page that was accessed during the out-of-order execution.
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the same execution port. A high latency 
implies that the sender sends a ‘1’-bit, 
whereas a low latency implies that the 
sender sends a ‘0’-bit. The advantage of 
the Flush+Reload cache covert channel 
is the noise resistance and the high 
transmission rate.8 Furthermore, with 
cache architectures commonly used in 
current CPUs, different memory access 
latencies can be observed from any 
CPU core,28 that is, rescheduling events 
do not significantly affect the covert 
channel.

The Meltdown Attack
Here, we present Meltdown, a power-
ful attack enabling arbitrary kernel 
memory (typically including the entire 
physical memory) to be read from an 
unprivileged user program, comprised 
of the building blocks presented ear-
lier. First, we discuss the attack setting 
to emphasize the wide applicability of 
this attack. Second, we present an at-
tack overview, showing how Meltdown 
can be mounted on both Windows 
and Linux on personal computers, on 
Android on mobile phones as well as 
in the cloud. Finally, we discuss a con-
crete implementation of Meltdown al-
lowing to dump memory with 3.2KiB/s 
to 503KiB/s.

Attack setting. In our attack, we con-
sider personal computers and virtual 
machines in the cloud. In the attack 
scenario, the attacker can execute arbi-
trary unprivileged code on the attacked 
system, that is, the attacker can run any 
code with the privileges of a normal 
user. The attacker targets secret user 
data, for example, passwords and pri-
vate keys, or any other valuable infor-
mation. Finally, we assume a com-
pletely bug-free operating system. That 
is, we assume the attacker does not ex-
ploit any software vulnerability to gain 
kernel privileges or to leak informa-
tion.

Attack description. Meltdown com-
bines the two building blocks dis-
cussed previously. At a high level, Melt-
down consists of three steps:

 ˲ Step 1: Reading the secret. The 
content of an attacker chosen memory 
location, which is inaccessible to the 
attacker, is loaded into a register.

 ˲ Step 2: Transmit the secret. A tran-
sient instruction accesses a cache line 
based on the secret content of the reg-
ister.

ous works8,19,28 have demonstrated that 
the microarchitectural state of the 
cache can be easily lifted into a archi-
tectural state. We, therefore, employ 
these techniques for our covert chan-
nel. Specifically, we use Flush+Reload,28 
as it allows building a fast and low-
noise covert channel.

After accessing a user-inaccessible 
secret value, the transient instruction 
sequence executes the cache covert 
channel transmitter, performing a 
memory access using the secret value 
as part of the address. As explained ear-
lier, this address remains cached for 
subsequent accesses, and survives the 
soon-to-be-raised exception. Thus, part 
of the cache state depends on the secret 
value and lifting this state to an archi-
tectural state leaks the secret value.

Recovering the leaked value. The co-
vert channel receiver can then monitor 
whether an address has been loaded 
into the cache by measuring the access 
time to the address. For example, the 
sender can transmit a ‘1’-bit by access-
ing an address which is loaded into the 
monitored cache, and a ‘0’-bit by not 
accessing such an address. Using mul-
tiple different cache lines, as in our toy 
example, allows transmitting multiple 
bits at once. For every one of the 256 
different byte values, the sender ac-
cesses a different cache line. By per-
forming a Flush+Reload attack on all of 
the 256 possible cache lines, the receiv-
er can recover a full byte rather than 
just one bit of secret value. However, 
since the Flush+Reload attack takes 
much longer (typically several hundred 
cycles) than the transient instruction 
sequence, transmitting only a single 
bit at once is more efficient. The attack-
er can choose the bit to transmit by 
shifting and masking the secret value 
accordingly.

Using other covert channels. Note the 
covert channel part is not limited to 
cache-based microarchitectural chan-
nels. Any instruction (or sequence) that 
influences the microarchitectural state 
of the CPU in a way that can be ob-
served from a user process can be used 
to build a covert channel transmitter. 
For example, to send a ‘1’-bit the send-
er could issue an instruction (or se-
quence), which occupies a certain exe-
cution port such as the ALU. The 
receiver measures the latency when ex-
ecuting an instruction (sequence) on 

Any instruction 
(or sequence) that 
influences the 
microarchitectural 
state of the CPU  
in a way that  
can be observed  
from a user process  
can be used to build 
a covert channel 
transmitter.
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by the page size of 4KiB. This ensures 
that accesses to the array have a large 
spatial distance from each other, pre-
venting the hardware prefetcher from 
loading adjacent memory locations 
into the cache. Here, we read a single 
byte at once. Hence, our probe array is 
256 × 4096 bytes long.

Line 3 adds the multiplied secret to 
the base address of the probe array, 
forming the target address of the co-
vert channel. It then accesses this ad-
dress, effectively bringing its content 
to the cache. Consequently, our tran-
sient instruction sequence affects the 
cache state based on the secret value 
that was read in Step 1.

Finally, since the transient instruc-
tion sequence in Step 2 races against 
raising the exception, reducing the 
runtime of Step 2 can significantly im-
prove the performance of the attack. 
For instance, taking care that the ad-
dress translation for the probe array is 
cached in the Translation Lookaside 
Buffer (TLB) increases the attack per-
formance on some systems.

Step 3: Receiving the secret. In 
Step 3, the attacker recovers the se-
cret value from Step 1 by implement-
ing the receiving end of a microarchi-
tectural covert channel that transfers 
the cache state (Step 2) back into an 
architectural state. As discussed, our 
implementation of Meltdown relies on 
Flush+Reload for this purpose.

When the transient instruction se-
quence of Step 2 is executed, exactly 
one cache line of the probe array is 
cached. The position of the cached 
cache line within the probe array de-
pends only on the secret, read in Step 1. 
To recover the secret, the attacker iter-
ates over all 256 pages of the probe ar-
ray and measures the access time to 
the first cache line of each page. The 
number of the page containing the 
cached cache line corresponds directly 
to the secret value.

Dumping physical memory. Repeat-
ing all three steps of Meltdown, an at-
tacker can dump the entire memory by 
iterating over all addresses. However, 
as the memory access to the kernel ad-
dress raises an exception that termi-
nates the program, we use one of the 
methods discussed earlier to handle or 
suppress the exception. Furthermore, 
because most major operating systems 
also map the entire physical memory 

 ˲ Step 3: Receive the secret. The at-
tacker uses Flush+Reload to deter-
mine the accessed cache line and 
hence the secret stored at the chosen 
memory location.

By repeating these steps for differ-
ent memory locations, the attacker can 
dump the kernel memory, including 
the entire physical memory.

Figure 5 shows a typical implemen-
tation of the transient instruction se-
quence and the sending part of the co-
vert channel, using x86 assembly 
instructions. Note this part of the at-
tack could also be implemented entire-
ly in higher level languages such as C. 
In the following, we discuss each step 
of Meltdown and the corresponding 
code line in Figure 5.

Step 1: Reading the secret. Recall 
that modern operating systems map 
the kernel into the virtual address 
space of every process. Consequently, 
a user process can specify addresses 
that map to the kernel space. As dis-
cussed, in parallel with performing 
the access, the CPU verifies that the 
process has the required permission 
for accessing the address, raising an 
exception if the user tries to reference 
a kernel address. However, when 
translating kernel addresses, they do 
lead to valid physical addresses the 
CPU can access, and only the immi-
nent exception due to illegal access 
protects the contents of the kernel 
space. Meltdown exploits the out-of-
order execution feature of modern 
CPUs, which execute instructions for a 
small-time window between the ille-
gal memory access and the subse-
quent exception.

Line 1 of Figure 5 loads a byte value 
from the target kernel address, point-
ed to by the RCX register, into the least 
significant byte of the RAX register 
represented by AL. The CPU executes 
this by fetching the MOV instruction, 
decoding and executing it, and send-
ing it to the reorder buffer for retire-
ment. As part of the execution, a tem-
porary physical register is allocated 
for the updated value of architectural 
register RAX. Trying to utilize the 
pipeline as much as possible, subse-
quent instructions (lines 2–3) are de-
coded and sent to the reservation sta-
tion holding the instructions while 
they wait to be executed by the corre-
sponding execution units.

Thus, when the kernel address is 
accessed in Line 1, it is likely that the 
CPU already issues the subsequent in-
structions as part of the out-of-order 
execution, and these instructions wait 
in the reservation station for the con-
tent of the kernel address to arrive. 
When this content arrives, the instruc-
tions can begin their execution. Fur-
thermore, processor interconnects13 
and cache coherence protocols23 guar-
antee that the most recent value of a 
memory address is read, regardless of 
the storage location in a multi-core or 
multi-CPU system.

When the processor finishes execut-
ing the instructions, they retire in-or-
der, and their results are committed to 
the architectural state by updating the 
register renaming tables, that is, the 
mapping of architectural to physical 
registers.10 During the retirement, any 
interrupts and exceptions that oc-
curred while executing of the instruc-
tion are handled. Thus, when the MOV 
instruction that loads the kernel ad-
dress (Line 1) is retired, the exception 
is registered, and the pipeline is 
flushed to eliminate all results of sub-
sequent instructions which were exe-
cuted out of order. However, there is a 
race condition between raising this ex-
ception and our attack Step 2.

Step 2: Transmitting the secret. 
The instruction sequence from Step 1, 
which is executed out-of-order, is cho-
sen such that it becomes a transient 
instruction sequence. If this transient 
instruction sequence is executed be-
fore the MOV instruction is retired, 
and the transient instruction se-
quence performs computations based 
on the secret, it can transmit the se-
cret to the attacker.

As already discussed, we use cache 
attacks that allow building fast and 
low-noise covert channels using the 
CPU’s cache. Thus, the transient in-
struction sequence has to encode the 
secret as a microarchitectural cache 
state, similar to our toy example.

We allocate a probe array in memory 
and ensure that no part of this array is 
cached. To transmit the secret, the 
transient instruction sequence per-
forms an indirect memory access to an 
address which depends on the secret 
(inaccessible) value. Line 2 of Figure 5 
shifts the secret value from Step 1 by 12 
bits to the left, effectively multiplying it 
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and the linearity of the mapping the 
randomization of the direct physical 
map is usually 7 bits or lower. Hence, 
the attacker can test addresses in 
steps of 8GB, resulting in a maximum 
of 128 memory locations to test. Start-
ing from one discovered location, the 
attacker can again dump the entire 
physical memory.

Windows. We successfully evaluated 
Meltdown on a recent Microsoft Win-
dows 10 operating system, last updated 
just before patches against Meltdown 
were rolled out. In line with the results 
on Linux, Meltdown can leak arbitrary 
kernel memory on Windows. This is 
not surprising, since Meltdown does 
not exploit any software issues, but is 
caused by a hardware issue.

In contrast to Linux, Windows does 
not map the physical memory directly 
in the kernel’s virtual address space. 
Instead, a large fraction of the physical 
memory is mapped in the paged pools, 
nonpaged pools, and the system cache. 
Windows does map the kernel into the 
address space of every application. 
Thus, Meltdown can read kernel mem-
ory that is mapped in the kernel ad-
dress space, that is, any part of the ker-
nel which is not swapped out, and any 
page mapped in the paged and non-
paged pool, and in the system cache.

Note that there are physical pages 
which are mapped in one process but 
not in the (kernel) address space of an-
other process. These physical pages 
cannot be attacked using Meltdown. 
However, most of the physical memory 
is accessible through Meltdown.

We could read the binary code of the 
Windows kernel using Meltdown. To 
verify that the leaked data is indeed 
kernel memory, we first used the Win-
dows kernel debugger to obtain kernel 
addresses containing actual data. After 
leaking the data, we again used the 
Windows kernel debugger to compare 
the leaked data with the actual memory 
content, confirming that Meltdown 
can successfully leak kernel memory.

Android. We successfully evaluated 
Meltdown on a Samsung Galaxy S7 mo-
bile phone running LineageOS An-
droid 14.1 with a Linux kernel 3.18.14. 
The device is equipped with a Samsung 
Exynos 8 Octa 8890 SoC consisting of 
an ARM Cortex-A53 CPU with four 
cores as well as an Exynos M1 “Mon-
goose” CPU with four cores.2 While we 

were not able to mount the attack on 
the Cortex-A53 CPU, we successfully 
mounted Meltdown on Samsung’s cus-
tom cores. Using exception suppres-
sion via branch misprediction as de-
scribed previously, we successfully 
leaked a predefined string using the 
direct physical map located at the vir-
tual address 0xffff ffbf c000 0000.

Containers. We evaluated Meltdown 
in containers sharing a kernel, includ-
ing Docker, LXC, and OpenVZ and 
found that the attack can be mounted 
without any restrictions. Running 
Meltdown inside a container allows to 
leak information not only from the un-
derlying kernel but also from all other 
containers running on the same physi-
cal host. The commonality of most 
container solutions is that every con-
tainer uses the same kernel, that is, the 
kernel is shared among all containers. 
Thus, every container has a valid map-
ping of the entire physical memory 
through the direct-physical map of the 
shared kernel. Furthermore, Meltdown 
cannot be blocked in containers, as it 
uses only memory accesses. Especially 
with Intel TSX, only unprivileged in-
structions are executed without even 
trapping into the kernel. Thus, the con-
fidentiality guarantee of containers 
sharing a kernel can be entirely broken 
using Meltdown. This is especially crit-
ical for cheaper hosting providers 
where users are not separated through 
fully virtualized machines, but only 
through containers. We verified that 
our attack works in such a setup, by 
successfully leaking memory contents 
from a container of a different user un-
der our control.

Meltdown performance. To evaluate 
the performance of Meltdown, we 
leaked known values from kernel 
memory. This allows us to not only de-
termine how fast an attacker can leak 
memory, but also the error rate, that is, 
how many byte errors to expect. The 
race condition in Meltdown has a sig-
nificant influence on the performance 
of the attack, however, the race condi-
tion can always be won. If the targeted 
data resides close to the core, for exam-
ple, in the L1 data cache, the race con-
dition is won with a high probability. In 
this scenario, we achieved average 
reading rates of 552.4KiB/s on average 
(σ = 10.2) with an error rate of 0.009 % 
(σ = 0.014) using exception suppres-

into the kernel address space in every 
user process, Meltdown can also read 
the entire physical memory of the tar-
get machine.

Evaluation
In this section, we evaluate Meltdown 
and the performance of our proof-of-
concept implementation.a We discuss 
the information Meltdown can leak, 
and evaluate the performance of Melt-
down, including countermeasures. 
Our results are consistent across vul-
nerable laptops, desktop PCs, mobile 
phones, and cloud systems.

Leakage and environments. We 
evaluated Meltdown on various operat-
ing systems with and without patches. 
On all unpatched operating systems, 
Meltdown can successfully leak kernel 
memory. We detail the Linux, Windows 
and Android evaluation here.

Linux. We successfully evaluated 
Meltdown on multiple versions of the 
Linux kernel, from 2.6.32 to 4.13.0, 
without the patches introducing the 
KAISER mechanism. On all of these 
Linux kernel versions, the kernel is 
mapped into the address space of user 
processes, but access is prevented by 
the permission settings for these ad-
dresses. As Meltdown bypasses these 
permission settings, an attacker can 
leak the complete kernel memory if the 
virtual address of the kernel base is 
known. Since all major operating sys-
tems (even 32 bit as far as possible) also 
map the entire physical memory into 
the kernel address space, all physical 
memory can also be read.

Before kernel 4.12, kernel address 
space layout randomization (KASLR) 
was not enabled by default.20 Without 
KASLR, the entire physical memory 
was directly mapped starting at ad-
dress 0xffff 8800 0000 0000. On such 
systems, an attacker can use Meltdown 
to dump the entire physical memory, 
simply by reading from virtual address-
es starting at 0xffff 8800 0000 0000. 
When KASLR is enabled, Meltdown 
can still find the kernel by searching 
through the address space. An attacker 
can also de-randomize the direct physi-
cal map by iterating through the virtual 
address space.

On newer systems KASLR is usually 
active by default. Due to the large size 

a https://github.com/IAIK/meltdown/
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Real-world Meltdown exploit. To 
demonstrate the applicability of Melt-
down, we show a possible real-world 
exploit that allows an attacker to steal 
the secret key used to store sensitive 
data. We look at VeraCrypt,12 a freeware 
solution that allows users to protect 
sensitive data using file or hard disk 
encryption. We note that VerCrypt is 
just an example, and any software that 
keeps its key material in main memory 
can be attacked in a similar manner.

Attack scenario. In our scenario, the 
attacker gained access to the encrypt-
ed container or the encrypted hard 
drive of the victim. Without the secret 
key, the attacker is unable to decrypt 
the data, which is therefore secure. 
However, as VeraCrypt keeps the se-
cret key in the main memory, relying 
on memory isolation to protect the 
key from unauthorized access, an at-
tacker can use Meltdown to recover 
the key. A naïve approach for that is to 
dump the entire physical memory of 
the computer and search in it. Howev-
er, this approach is not practical. In-
stead, we show the attacker can recov-
er the page mapping of the VeraCrypt 
process and, thus, limit the amount of 
data to leak. For our experiments, we 
used VeraCrypt 1.22.

Breaking KASLR. As KASLR is active 
on the attacked system, the attacker 
must first de-randomize the kernel ad-
dress space layout to access internal 
kernel structures and arbitrary physi-
cal addresses using the direct map-
ping. By locating a known value inside 
the kernel, for example, the Linux ban-
ner, the randomization offset can be 
computed as the difference between 
the found address and the non-ran-
domized base address. The Linux 
KASLR implementation only has an en-
tropy of 6 bits,15 hence there are only 64 
possible randomization offsets, mak-
ing this approach practical.

Locating the VeraCrypt process. Linux 
manages processes in a linked list 
whose head is stored in the init_task 
structure. The structure’s address is at 
a fixed offset that only depends on the 
kernel build and does not change when 
packages are loaded. Each entry in the 
task list points to the next element, al-
lowing easy traversal. Entries further 
include the process id of the task, its 
name and the root of the multi-level 
page table, allowing the attacker to 

sion on the Core i7-8700K over 10 runs 
over 10 seconds. On the Core i7-6700K 
we achieved on average 515.5KiB/s (σ = 
5.99) with an error rate of 0.003 % on 
average (σ = 0.001) and 466.3KiB/s on 
average (σ = 16.75) with an error rate of 
11.59 % on average (σ = 0.62) on the 
Xeon E5-1630. However, with a slower 
version with an average reading speed 
of 137KiB/s, we were able to reduce the 
error rate to zero. Furthermore, on the 
Intel Core i7-6700K if the data resides 
in the L3 data cache but not in the L1, 
the race condition can still be won of-
ten, but the average reading rate de-
creases to 12.4KiB/s with an error rate 
as low as 0.02 % using exception sup-
pression. However, if the data is un-
cached, winning the race condition is 
more difficult and, thus, we have ob-
served average reading rates of less 
than 10B/s on most systems. Neverthe-
less, there are two optimizations to im-
prove the reading rate: First, by simul-
taneously letting other threads 
prefetch the memory locations7 of and 
around the target value and access the 
target memory location (with excep-
tion suppression or handling). This in-
creases the probability that the spying 
thread sees the secret data value in the 
right moment during the data race. 
Second, by triggering the hardware 
prefetcher within our own thread 
through speculative accesses to memo-
ry locations of and around the target 
value before the actual Meltdown at-
tack. With these optimizations, we can 
improve the reading rate for uncached 
data to 3.2KiB/s on average.

For all of the tests, we used 
Flush+Reload as a covert channel to 
leak the memory as described, and In-
tel TSX to suppress the exception. For 
brevity, we omit the results of evaluat-
ing exception suppression using con-
ditional branches. See Kocher et al.17 
for further information.

Limitations on ARM and AMD. We 
verified that some of the processors list-
ed as not affected (see the table) are not 
vulnerable. Specifically, we experiment-
ed with some AMD and Arm-based pro-
cessors and were unable to reproduce 
Meltdown on those. We nevertheless 
note that for both ARM and AMD, the 
toy example works reliably, indicating 
that out-of-order execution generally oc-
curs and instructions past illegal mem-
ory accesses are also performed.

Meltdown is a 
security issue 
rooted in hardware. 
Thus, to fully 
mitigate Meltdown, 
the hardware of 
modern CPUs must 
be modified.
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formance optimizations change the 
microarchitectural state, how this 
state can be lifted into an architectur-
al state, and how such attacks can be 
prevented. Without requiring any soft-
ware vulnerability and independent 
of the operating system, Meltdown 
enables an adversary to read sensitive 
data of other processes, containers, 
virtual machines, or the kernel. KAI-
SER is a reasonable short-term work-
around to prevent large-scale exploita-
tion of Meltdown until hardware fixes 
are deployed.
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identify the VeraCrypt process and to 
locate its page map.

Extracting the encryption key. The at-
tacker can now traverse the paging 
structures and read the memory used by 
the process directly. VeraCrypt stores 
the DataAreaKey in a SecureBuffer in 
the VolumeHeader of a Volume. If ASLR 
is not active, the attacker can directly 
read the key from the offset where the 
key is located. Otherwise, the attacker 
searches the memory for a suitable 
pointer from which it can track the data 
structures to the stored key.

With the extracted key, the attacker 
can decrypt the container image, giv-
ing full access to the stored sensitive 
data. This attack does not only apply to 
VeraCrypt but to every software that 
keeps its key material stored in main 
memory.

Countermeasures
Fundamentally, Meltdown is a secu-
rity issue rooted in hardware. Thus, 
to fully mitigate Meltdown, the hard-
ware of modern CPUs must be modi-
fied. Indeed, since the original publi-
cation of Meltdown, Intel has released 
9th-generation i-cores, which contain 
hardware mechanisms that mitigate 
Meltdown.

For older vulnerable hardware, low-
er performing software mitigations do 
exist. More specifically, Gruss et al.6 
proposed KAISER, a kernel modifica-
tion to not have the kernel mapped in 
the user space. While this modification 
was intended to prevent side-channel 
attacks breaking KASLR,7,11,15 it also 
prevents Meltdown, as it ensures there 
is no valid mapping to kernel space or 
physical memory available in user 
space. Since the publication of Melt-
down, Kernel Page Table Isolation 
(which is an implementation of KAI-
SER) has been adopted by all major op-
erating systems.

Conclusion
Meltdown fundamentally changes our 
perspective on the security of hard-
ware optimizations that change the 
state of microarchitectural elements. 
Meltdown and Spectre teach us that 
functional correctness is insufficient 
for security analysis and the micro-
architecture cannot be ignored. They 
further open a new field of research 
to investigate the extent to which per-


