
46 COMMUNICATIONS OF THE ACM | JUNE 2020 | VOL. 63 | NO. 6

contributed articles

I
M

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 P
H

O
T

O
 B

Y
 G

O
L

U
B

O
V

Y

Memory isolation is a cornerstone security feature in
the construction of every modern computer system.
Allowing the simultaneous execution of multiple
mutually distrusting applications at the same time on
the same hardware, it is the basis of enabling secure
execution of multiple processes on the same machine
or in the cloud. The operating system is in charge of
enforcing this isolation, as well as isolating its own
kernel memory regions from other users.

Given its central role on modern processors, the
isolation between the kernel and user processes is
backed by the hardware, in the form of a supervisor
bit that determines whether code in the current

context can access memory pages of
the kernel. The basic idea is that this
bit is set only when entering kernel
code and it is cleared when switching
to user processes. This hardware fea-
ture allows operating systems to map
the kernel into the address space of ev-
ery process, thus supporting very effi-
cient transitions from the user process
to the kernel (for example, for interrupt
handling) while maintaining the secu-
rity of the kernel memory space.

This article presents Meltdown, a
novel attack that exploits a vulnerabil-
ity in the way the processor enforces
memory isolation.

Root cause. At a high level, the root
cause of Meltdown’s simplicity and
strength are side effects caused by out-
of-order execution, which is an impor-
tant performance feature of modern
processors designed to overcome la-
tencies of busy execution units (for ex-
ample, a memory fetch unit waiting for
data arrival from memory). Rather than
stalling the execution, modern proces-
sors run operations out-of-order, that
is, they look ahead and schedule sub-
sequent operations on available execu-
tion units of the core.

While this feature is beneficial for
performance, from a security perspec-
tive, one observation is particularly
significant. Some CPUs allow an un-
privileged process to load data from a
privileged (kernel or physical) address
into a temporary register, delaying ex-
ception handling to later stages. The

Meltdown:
Reading
Kernel
Memory from
User Space

DOI:10.1145/3357033

Lessons learned from Meltdown’s exploitation
of the weaknesses in today’s processors.

BY MORITZ LIPP, MICHAEL SCHWARZ, DANIEL GRUSS,
THOMAS PRESCHER, WERNER HAAS, JANN HORN,
STEFAN MANGARD, PAUL KOCHER, DANIEL GENKIN,
YUVAL YAROM, MIKE HAMBURG, AND RAOUL STRACKX

 key insights
 ˽ Out-of-order execution, a performance

feature in most modern processors, is not
as harmless as was hitherto believed.

 ˽ Meltdown breaks memory isolation
by exploiting out-of-order execution
and a delayed permission check on
some Intel, IBM, and ARM CPUs,
allowing unprivileged attackers
to leak privileged data using
microarchitectural side channels.

 ˽ Since the discovery of Meltdown, many
other transient-execution vulnerabilities
have followed. As the root cause of all of
these lays in the underlying hardware,
the design of modern CPUs must be
modified to fully mitigate them.

http://dx.doi.org/10.1145/3357033

JUNE 2020 | VOL. 63 | NO. 6 | COMMUNICATIONS OF THE ACM 47

48 COMMUNICATIONS OF THE ACM | JUNE 2020 | VOL. 63 | NO. 6

contributed articles

ting the data via a covert channel, for
example, by modulating the state of
the cache. As the CPU’s internal state
is not fully reverted, the receiving end
of the covert channel can later recover
the transmitted value, for example, by
probing the state of the cache.

Threat model. To mount Meltdown,
the adversary needs the ability to exe-
cute code on a vulnerable machine. Ex-
ecuting code can be achieved through
various means, including hosting in
cloud services, apps in mobile phones,
and JavaScript code in website. Vulner-
able machines include personal com-
puters and servers featuring a large

range of processors (see the accompa-
nying table). Furthermore, while coun-
termeasures have been introduced to
both operating systems and browsers,
these only became available after the
disclosure of Meltdown.

Impact. Three properties of Melt-
down combine to have a devastating ef-
fect on the security of affected systems.
First, exploiting a hardware vulnerabil-
ity means the attack does not depend
on specific vulnerabilities in the soft-
ware. Thus, the attack is generic and, at
the time of discovery, affected all exist-
ing versions of all major operating sys-
tems. Second, because the attack only
depends on the hardware, traditional
software-based protections, such as
cryptography, operating system autho-
rization mechanisms, or antivirus soft-
ware, are powerless to stop the attack.
Last, because the vulnerability is in the
hardware, fixing the vulnerability re-
quires replacing the hardware. While
software-based countermeasures for
Meltdown have been developed, these
basically avoid using the vulnerable
hardware feature, incurring a signifi-
cant performance hit.

Evaluation. We evaluated the attack
on modern desktop machines and
laptops, as well as servers and clouds.
Meltdown is effective against all major
operating systems (including Linux,
Android, OS X and Windows), allow-
ing an unprivileged attacker to dump
large parts of the physical memory. As
the physical memory is shared among
all other tenants running on the same
hardware, this may include the physi-
cal memory of other processes, the ker-
nel, and in the case of paravirtualiza-
tion, the memory of the hypervisor or
other co-located instances. While the
performance heavily depends on the
specific machine—for example, pro-
cessor speed, TLB and cache sizes, and
DRAM speed—we can dump arbitrary
kernel and physical memory at a speed
of 3.2KiB/s to 503KiB/s.

Countermeasures. While not origi-
nally intended to be a countermeasure
for Meltdown, KAISER,6 developed ini-
tially to prevent side-channel attacks
targeting KASLR, also protects against
Meltdown. Our evaluation shows that
KAISER prevents Meltdown to a large
extent. Consequently, we stress it is of
utmost importance to deploy KAISER
on all operating systems immediately.

CPU even allows performing further
computations based on this register
value, such as using it as an index to
an array access. When the CPU finally
realizes the error, it reverts the results
of this incorrect transient execution,
discarding any modifications to the
program state (for example, registers).
However, we observe that out-of-order
memory lookups influence the internal
state of the processor, which in turn
can be detected by the program. As a
result, an attacker can dump the entire
kernel memory by reading privileged
memory in an out-of-order execution
stream, and subsequently transmit-

Summary of processors affected by Meltdown.

Arch. Description

x86 Most Intel and VIA processors are vulnerable. AMD processors
are not.

Arm Cortex-A75 and SoCs based on it are vulnerable. Some proprietary
Arm-based rocessors, including some Apple and Samsung cores,
are also vulnerable. Arm Cortex-A72, Cortex-A57 and Cortex-A15
are vulnerable to a Variant 3a of Meltdown. Other Arm cores are
not known to be vulnerable.

Power All IBM Power architecture processors are vulnerable.

z/Arch. IBM z10, z13, z14, z196, zEC12 are vulnerable.

SPARC V9-based SPARC systems are not vulnerable. Older SPARC proces-
sors may be impacted.

Itanium Itanium processors are not vulnerable.

Figure 1. On Unix-like 64-bit systems, a physical address (blue) which is mapped accessible
to the user space is also mapped in the kernel space through the direct mapping.

0 max

Physical Memory

User Kernel

0 –12–47 –2–47

Figure 2. If an executed instruction causes an exception, control flow is diverted to an
exception handler. Subsequent instruction may already have been partially executed, but
not retired. Architectural effects of this transient execution are discarded.

Exception
Handler

E
xe

cu
te

d
Tr

an
si

en
t

E
xe

cu
tio

n

JUNE 2020 | VOL. 63 | NO. 6 | COMMUNICATIONS OF THE ACM 49

contributed articles

its performance. Thus, the microarchi-
tectural state of the processor depends
on prior software execution and affects
its future behavior, creating the poten-
tial for untraditional communication
channels.5

Out-of-order execution. Out-of-or-
der execution10 is an optimization
technique that increases the utiliza-
tion of the execution units of a CPU
core. Instead of processing instruc-
tions strictly in sequential program
order, waiting for slow instructions to
complete before executing subse-
quent instructions, the CPU executes
them as soon as all required resources
are available. While the execution unit
of the current operation is occupied,
other execution units can run ahead.
Hence, instructions execute in paral-
lel as long as their results follow the
architectural definition.

Address spaces. To isolate process-
es from each other, CPUs support vir-
tual address spaces where virtual ad-
dresses are translated to physical
addresses. The operating system ker-
nel plays a key role in managing the ad-
dress translation for processes. Conse-
quently, the memory of the kernel
must also be protected from user pro-
cesses. Traditionally, in segmented ar-
chitectures,10 the kernel had its own
segments that were not accessible to
user processes.

In modern processors, a virtual ad-
dress space is divided into a set of pag-
es that can be individually mapped to
physical memory through a multilevel
page translation table. In addition to
the virtual to physical mapping, the
translation tables also specify protec-
tion properties that specify the allowed
access to the mapped pages. These
properties determine, for example,
whether pages are readable, writable,
and executable. A pointer to the cur-
rently used translation table is held in a
dedicated CPU register. During a con-
text switch, the operating system up-
dates this register to point to the trans-
lation table of the next process, thereby
implementing a per-process virtual ad-
dress space, allowing each process to
only reference data that belongs to its
virtual address space. To reduce the
cost of consulting the translation ta-
bles, the processor caches recent trans-
lation results in the Translation Looka-
side Buffer (TLB).

Fortunately, during the responsible
disclosure window, the three major op-
erating systems (Windows, Linux, and
OS X) implemented variants of KAISER
and recently rolled out these patches.

Spectre attacks and follow-up works.
Meltdown was published simultane-
ously with the Spectre Attack,17 which
exploits a different CPU performance
feature, called speculative execution,
to leak confidential information. Melt-
down is distinct from Spectre in several
ways, notably that Spectre requires tai-
loring to the victim process’s software
environment but applies more broadly
to CPUs and is not mitigated by KAI-
SER. Since the publication of Melt-
down and Spectre, several prominent
follow-up works exploited out of order
and speculative execution mecha-
nisms to leak information across other
security domains.1,14,16,18,22,24,25,27 See
Canella et al.4 for a survey.

At the time of writing, Microarchi-
tectural Data Sampling (MDS) is the
most recent line of attacks,3,21,26 which
exploit speculative and out-of-order
execution in order to leak information
across nearly all possible security do-
mains. Finally, while some of the at-
tacks discussed in this section have
been mitigated, additional work is re-
quired to mitigate others as well as fu-
ture yet-to-be discovered CPU vulner-
abilities.

Background
Here, we provide background on out-
of-order execution, address transla-
tion, and cache attacks.

The microarchitecture. The Instruc-
tion Set Architecture (ISA) of a proces-
sor is the interface it provides to the
software it executes. The ISA is typically
defined as some state, which mostly
consists of the contents of the architec-
tural registers and the memory, and a
set of instructions that operate on this
state. The implementation of this in-
terface consists of multiple compo-
nents, collectively called the microar-
chitecture. The microarchitecture
maintains a state that extends the ar-
chitectural state of the processor as de-
fined by the ISA, adding further infor-
mation required for the operation of
the microarchitectural components.
While changes in the microarchitec-
tural state do not affect the logical be-
havior of the program, they may affect

Our evaluation
shows that KAISER
prevents Meltdown
to a large extent.
Consequently,
we stress it is of
utmost importance
to deploy KAISER
on all operating
systems
immediately.

50 COMMUNICATIONS OF THE ACM | JUNE 2020 | VOL. 63 | NO. 6

contributed articles

calls,29 user input,9 and kernel address-
ing information.7

A special use case of a side-channel
attack is a covert channel. Here, the at-
tacker controls both the part that in-
duces the side effect and the part that
measures the side effect. This can be
used to leak information from one se-
curity domain to another while bypass-
ing any boundaries existing on the ar-
chitectural level or above. Both
Prime+Probe and Flush+Reload have
been used in high-performance covert
channels.8

A Toy Example
We start with a toy example, which il-
lustrates that out-of-order execution
can change the microarchitectural
state in a way that leaks information.

Triggering out-of-order execution.
Figure 2 illustrates a simple code se-
quence first raising an (unhandled)
exception and then accessing an array.
The exception can be raised through
any mean, such as accessing an inval-
id memory address, performing a priv-
ileged instruction in user code, or
even division by zero. An important
property of an exception, irrespective
of its cause, is that the control flow
does not follow program order to the
code following the exception. Instead,
it jumps to an exception handler in
the operating system kernel. Thus, the
code in our toy example is expected
not to access the array because the ex-
ception traps to the kernel and termi-
nates the application before the ac-
cess is performed. However, we note
the access instruction after the excep-
tion has no data dependency on the
trapping instruction. Hence, due to
out-of-order execution, the CPU might
execute the access before triggering
the exception. When the exception is
triggered, instructions executed out of
order are not retired and, thus, never
have architectural effects. However,
instructions executed out-of-order do
have side-effects on the microarchi-
tecture. In particular, the contents of
the memory accessed after the excep-
tion in Figure 2 are fetched into a reg-
ister and also stored in the cache.
When the out-of-order execution is re-
verted (that is, the register and memo-
ry contents are never committed), the
cached memory contents survive re-
version and remain in the cache for

some time. We can now leverage a mi-
croarchitectural side-channel attack,
such as Flush+Reload,28 to detect
whether a specific memory location is
cached, thereby making the affected
microarchitectural state visible.

Observing out-of-order execution. The
code in Figure 2 accesses a memory ad-
dress that depends on the value of data.
As data is multiplied by 4,096, data ac-
cesses to array are scattered over the ar-
ray with a distance of 4KiB (assuming a
1B data type for array). Thus, there is an
injective mapping from the value of
data to a memory page, that is, differ-
ent values for data never result in ac-
cesses to the same page. Consequently,
if a cache line of a page is cached, we
can determine the value of data.

Figure 3 shows the result of
Flush+Reload measurements iterating
over all of the pages of array, after exe-
cuting the out-of-order snippet in Fig-
ure 2 with data = 84. Although the array
access should not have happened due
to the exception, we can clearly see that
the index which would have been ac-
cessed is cached. Iterating over all pag-
es (for example, in the exception han-
dler) shows a cache hit for page 84 only.
This demonstrates that instructions
that are only executed out-of-order but
are never retired, change the microar-
chitectural state of the CPU. Later, we
show how we modify this toy example
to leak an inaccessible secret.

Building Blocks of the Attack
The toy example noted earlier illus-
trates that side effects of out-of-order
execution can modify the microar-
chitectural state to leak information.
While the code snippet reveals the data
value passed to a cache side channel,
we want to show how this technique
can be leveraged to leak otherwise in-
accessible secrets. Here, we want to
generalize and discuss the necessary
building blocks to exploit out-of-order
execution for an attack.

Overview of Meltdown. Assume an
adversary that targets a secret value
which is kept somewhere in physical
memory. The full Meltdown attack
leaks this value using two building
blocks, as illustrated in Figure 4. The
first building block of Meltdown is to
make the CPU execute one or more
transient instructions, that is, instruc-
tions that do not occur during regular

While the TLB reduces the cost of
address translation, its contents must
be flushed when changing address
space. Modern systems include the
kernel memory within the address
space of every process to avoid the cost
of flushing the TLB on every switch be-
tween the user program and the kernel.
Following an idea first introduced in
the VAX/VMS system, the page table
also includes a protection bit that indi-
cates whether the page belongs to the
kernel or to the user program. Kernel
pages are only accessible when the pro-
cessor executes with high privileges,
that is, when executing the kernel.
Thus, user processes are not able to
read or to modify the contents of the
kernel memory.

To aid in memory management,
many modern operating systems di-
rectly map (a part of) the physical
memory in the kernel’s part of the vir-
tual address space at a fixed location m
(see Figure 1). A physical address p can
then be assessed through virtual ad-
dress p + m.

Cache attacks. To speed-up memory
accesses and address translation, the
CPU contains small memory buffers,
called caches, that store frequently
used data. CPU caches hide slow mem-
ory accesses by buffering frequently
used data in smaller and faster internal
memory. Modern CPUs have multiple
levels of caches that are either private
per core or shared among them. Ad-
dress space translation tables are also
stored in memory and, thus, also
cached in the regular caches.

Cache side-channel attacks exploit
the timing differences introduced by
the caches. Several cache attack tech-
niques have been proposed and dem-
onstrated in the past, including
Prime+Probe19 and Flush+Reload.28
Flush+Reload attacks work on a single
cache line granularity. These attacks
exploit the shared, inclusive last-level
cache. An attacker frequently flushes a
targeted memory location using the
clflush instruction. By measuring the
time it takes to reload the data, the at-
tacker determines whether the memo-
ry location was loaded into the cache
by another process since the last
clflush. The Flush+Reload attack has
been used for attacks on various com-
putations, for example, cryptographic
algorithms,28 Web server function

JUNE 2020 | VOL. 63 | NO. 6 | COMMUNICATIONS OF THE ACM 51

contributed articles

an exception. See Kocher et al.17 for fur-
ther details on speculative execution
and transient instructions.

Building a covert channel. The sec-
ond building block of Meltdown is lift-
ing the microarchitectural state, which
was changed by the transient instruc-
tion sequence, into an architectural
state (as shown in Figure 4). The tran-
sient instruction sequence can be seen
as the transmitting end of a microar-
chitectural covert channel. The receiv-
ing end of the covert channel receives
the microarchitectural state change
and deduces the secret from the state.
Note the receiver is not part of the tran-
sient instruction sequence and can be
a different thread or process, for exam-
ple, the parent process in the fork-and-
crash approach.

A cache-based covert channel. Previ-

execution. The second building block
of Meltdown is to transfer the microar-
chitectural side effect of the transient
instruction sequence to an architectur-
al state to further process the leaked
secret. Later, we describe methods to
lift a microarchitectural side effect to
an architectural state using covert
channels.

Executing transient instructions.
The first building block of Meltdown is
the execution of transient instructions,
which are executed out-of-order and
leave measurable side effects. We focus
on transient instructions that follow an
illegal access to addresses that are
mapped within the attacker’s process
such as user-inaccessible kernel space
addresses. In general, accessing such
user-inaccessible addresses triggers an
exception, which typically terminates
the application. Because we want to
measure the microarchitectural state
of the processor after the transient ex-
ecution, we want to avoid terminating
the process. We now present several
approaches the attacker can use to
cope with the exception.

Fork-and-crash. A trivial approach is
to fork the attacking application before
accessing the invalid memory location
that terminates the process and only
access the invalid memory location in
the child process. The CPU executes
the transient instruction sequence in
the child process before crashing. The
parent process can then recover the se-
cret by probing the microarchitectural
state.

Exception handling. Next, it is also
possible to install a signal handler that
is executed when a certain exception
occurs, for example, a segmentation
violation. This allows the attacker to is-
sue the instruction sequence and pre-
vent the application from crashing, re-
ducing the overhead as no new process
has to be created.

Exception suppression via TSX. An
alternative approach to deal with ex-
ceptions is to prevent them from be-
ing raised in the first place. Intel’s
Transactional Synchronization Exten-
sions (TSX) defines the concept of
transaction, which is a sequence of in-
structions that execute atomically,
that is, either all of the instructions in
a transaction are executed, or none of
them is. If an instruction within the
transaction fails, already executed in-

structions are reverted, but no excep-
tion is raised. By wrapping the code in
Figure 5 in such a TSX transaction, the
exception is suppressed. Yet, the mi-
croarchitectural effects of transient
execution are still visible. Because
suppressing the exception is signifi-
cantly faster than trapping into the
kernel for handling the exception, and
continuing afterwards, this results in
a higher channel capacity.

Exception suppression via branch pre-
dictor. Finally, speculative execution is-
sues instructions that might not occur
in the program order due to a branch
misprediction. Thus, by forcing a mis-
prediction that speculatively executes
the invalid memory access, we can
achieve transient execution of both the
invalid memory access and the instruc-
tions following it, without triggering

Figure 4. The Meltdown attack uses exception handling or suppression, for example, TSX, to
run a series of transient instructions.

Exception Handling/Suppression

Transient Instructions

Microarchitectual State Change

Accessed

Recovery

Leaked

Recovered Secret

Secret

Architectural State

Transfer (Covert Channel)

Section 4.1

Section 4.2

These transient instructions obtain a (persistent) secret value and change
the microarchitectural state of the processor based on this secret value. This forms
the sending part of a microarchitectural covert channel. The receiving side reads
the microarchitectural state, lifts it to architectural, and recovers the secret value.

Figure 5. The core of Meltdown.

An inaccessible kernel address is moved to a register, raising an exception.
Subsequent instructions are executed out of order before the exception is raised,
leaking the data from the kernel address through the indirect memory access.

1 mov al, byte [rcx] ; rcx = kernel address
2 shl rax, Øxc
3 mov rbx, qword [rbx + rax] ; rbx = probe array

Figure 3. Even if a memory location is only accessed during out-of-order execution,
it remains cached. Iterating over the 256 pages of array shows one cache hit, exactly on
the page that was accessed during the out-of-order execution.

A
cc

es
s

T
im

e
[c

yc
le

s]

500

400

300

200

Page

0 50 100 150 200 250

52 COMMUNICATIONS OF THE ACM | JUNE 2020 | VOL. 63 | NO. 6

contributed articles

the same execution port. A high latency
implies that the sender sends a ‘1’-bit,
whereas a low latency implies that the
sender sends a ‘0’-bit. The advantage of
the Flush+Reload cache covert channel
is the noise resistance and the high
transmission rate.8 Furthermore, with
cache architectures commonly used in
current CPUs, different memory access
latencies can be observed from any
CPU core,28 that is, rescheduling events
do not significantly affect the covert
channel.

The Meltdown Attack
Here, we present Meltdown, a power-
ful attack enabling arbitrary kernel
memory (typically including the entire
physical memory) to be read from an
unprivileged user program, comprised
of the building blocks presented ear-
lier. First, we discuss the attack setting
to emphasize the wide applicability of
this attack. Second, we present an at-
tack overview, showing how Meltdown
can be mounted on both Windows
and Linux on personal computers, on
Android on mobile phones as well as
in the cloud. Finally, we discuss a con-
crete implementation of Meltdown al-
lowing to dump memory with 3.2KiB/s
to 503KiB/s.

Attack setting. In our attack, we con-
sider personal computers and virtual
machines in the cloud. In the attack
scenario, the attacker can execute arbi-
trary unprivileged code on the attacked
system, that is, the attacker can run any
code with the privileges of a normal
user. The attacker targets secret user
data, for example, passwords and pri-
vate keys, or any other valuable infor-
mation. Finally, we assume a com-
pletely bug-free operating system. That
is, we assume the attacker does not ex-
ploit any software vulnerability to gain
kernel privileges or to leak informa-
tion.

Attack description. Meltdown com-
bines the two building blocks dis-
cussed previously. At a high level, Melt-
down consists of three steps:

 ˲ Step 1: Reading the secret. The
content of an attacker chosen memory
location, which is inaccessible to the
attacker, is loaded into a register.

 ˲ Step 2: Transmit the secret. A tran-
sient instruction accesses a cache line
based on the secret content of the reg-
ister.

ous works8,19,28 have demonstrated that
the microarchitectural state of the
cache can be easily lifted into a archi-
tectural state. We, therefore, employ
these techniques for our covert chan-
nel. Specifically, we use Flush+Reload,28
as it allows building a fast and low-
noise covert channel.

After accessing a user-inaccessible
secret value, the transient instruction
sequence executes the cache covert
channel transmitter, performing a
memory access using the secret value
as part of the address. As explained ear-
lier, this address remains cached for
subsequent accesses, and survives the
soon-to-be-raised exception. Thus, part
of the cache state depends on the secret
value and lifting this state to an archi-
tectural state leaks the secret value.

Recovering the leaked value. The co-
vert channel receiver can then monitor
whether an address has been loaded
into the cache by measuring the access
time to the address. For example, the
sender can transmit a ‘1’-bit by access-
ing an address which is loaded into the
monitored cache, and a ‘0’-bit by not
accessing such an address. Using mul-
tiple different cache lines, as in our toy
example, allows transmitting multiple
bits at once. For every one of the 256
different byte values, the sender ac-
cesses a different cache line. By per-
forming a Flush+Reload attack on all of
the 256 possible cache lines, the receiv-
er can recover a full byte rather than
just one bit of secret value. However,
since the Flush+Reload attack takes
much longer (typically several hundred
cycles) than the transient instruction
sequence, transmitting only a single
bit at once is more efficient. The attack-
er can choose the bit to transmit by
shifting and masking the secret value
accordingly.

Using other covert channels. Note the
covert channel part is not limited to
cache-based microarchitectural chan-
nels. Any instruction (or sequence) that
influences the microarchitectural state
of the CPU in a way that can be ob-
served from a user process can be used
to build a covert channel transmitter.
For example, to send a ‘1’-bit the send-
er could issue an instruction (or se-
quence), which occupies a certain exe-
cution port such as the ALU. The
receiver measures the latency when ex-
ecuting an instruction (sequence) on

Any instruction
(or sequence) that
influences the
microarchitectural
state of the CPU
in a way that
can be observed
from a user process
can be used to build
a covert channel
transmitter.

JUNE 2020 | VOL. 63 | NO. 6 | COMMUNICATIONS OF THE ACM 53

contributed articles

by the page size of 4KiB. This ensures
that accesses to the array have a large
spatial distance from each other, pre-
venting the hardware prefetcher from
loading adjacent memory locations
into the cache. Here, we read a single
byte at once. Hence, our probe array is
256 × 4096 bytes long.

Line 3 adds the multiplied secret to
the base address of the probe array,
forming the target address of the co-
vert channel. It then accesses this ad-
dress, effectively bringing its content
to the cache. Consequently, our tran-
sient instruction sequence affects the
cache state based on the secret value
that was read in Step 1.

Finally, since the transient instruc-
tion sequence in Step 2 races against
raising the exception, reducing the
runtime of Step 2 can significantly im-
prove the performance of the attack.
For instance, taking care that the ad-
dress translation for the probe array is
cached in the Translation Lookaside
Buffer (TLB) increases the attack per-
formance on some systems.

Step 3: Receiving the secret. In
Step 3, the attacker recovers the se-
cret value from Step 1 by implement-
ing the receiving end of a microarchi-
tectural covert channel that transfers
the cache state (Step 2) back into an
architectural state. As discussed, our
implementation of Meltdown relies on
Flush+Reload for this purpose.

When the transient instruction se-
quence of Step 2 is executed, exactly
one cache line of the probe array is
cached. The position of the cached
cache line within the probe array de-
pends only on the secret, read in Step 1.
To recover the secret, the attacker iter-
ates over all 256 pages of the probe ar-
ray and measures the access time to
the first cache line of each page. The
number of the page containing the
cached cache line corresponds directly
to the secret value.

Dumping physical memory. Repeat-
ing all three steps of Meltdown, an at-
tacker can dump the entire memory by
iterating over all addresses. However,
as the memory access to the kernel ad-
dress raises an exception that termi-
nates the program, we use one of the
methods discussed earlier to handle or
suppress the exception. Furthermore,
because most major operating systems
also map the entire physical memory

 ˲ Step 3: Receive the secret. The at-
tacker uses Flush+Reload to deter-
mine the accessed cache line and
hence the secret stored at the chosen
memory location.

By repeating these steps for differ-
ent memory locations, the attacker can
dump the kernel memory, including
the entire physical memory.

Figure 5 shows a typical implemen-
tation of the transient instruction se-
quence and the sending part of the co-
vert channel, using x86 assembly
instructions. Note this part of the at-
tack could also be implemented entire-
ly in higher level languages such as C.
In the following, we discuss each step
of Meltdown and the corresponding
code line in Figure 5.

Step 1: Reading the secret. Recall
that modern operating systems map
the kernel into the virtual address
space of every process. Consequently,
a user process can specify addresses
that map to the kernel space. As dis-
cussed, in parallel with performing
the access, the CPU verifies that the
process has the required permission
for accessing the address, raising an
exception if the user tries to reference
a kernel address. However, when
translating kernel addresses, they do
lead to valid physical addresses the
CPU can access, and only the immi-
nent exception due to illegal access
protects the contents of the kernel
space. Meltdown exploits the out-of-
order execution feature of modern
CPUs, which execute instructions for a
small-time window between the ille-
gal memory access and the subse-
quent exception.

Line 1 of Figure 5 loads a byte value
from the target kernel address, point-
ed to by the RCX register, into the least
significant byte of the RAX register
represented by AL. The CPU executes
this by fetching the MOV instruction,
decoding and executing it, and send-
ing it to the reorder buffer for retire-
ment. As part of the execution, a tem-
porary physical register is allocated
for the updated value of architectural
register RAX. Trying to utilize the
pipeline as much as possible, subse-
quent instructions (lines 2–3) are de-
coded and sent to the reservation sta-
tion holding the instructions while
they wait to be executed by the corre-
sponding execution units.

Thus, when the kernel address is
accessed in Line 1, it is likely that the
CPU already issues the subsequent in-
structions as part of the out-of-order
execution, and these instructions wait
in the reservation station for the con-
tent of the kernel address to arrive.
When this content arrives, the instruc-
tions can begin their execution. Fur-
thermore, processor interconnects13
and cache coherence protocols23 guar-
antee that the most recent value of a
memory address is read, regardless of
the storage location in a multi-core or
multi-CPU system.

When the processor finishes execut-
ing the instructions, they retire in-or-
der, and their results are committed to
the architectural state by updating the
register renaming tables, that is, the
mapping of architectural to physical
registers.10 During the retirement, any
interrupts and exceptions that oc-
curred while executing of the instruc-
tion are handled. Thus, when the MOV
instruction that loads the kernel ad-
dress (Line 1) is retired, the exception
is registered, and the pipeline is
flushed to eliminate all results of sub-
sequent instructions which were exe-
cuted out of order. However, there is a
race condition between raising this ex-
ception and our attack Step 2.

Step 2: Transmitting the secret.
The instruction sequence from Step 1,
which is executed out-of-order, is cho-
sen such that it becomes a transient
instruction sequence. If this transient
instruction sequence is executed be-
fore the MOV instruction is retired,
and the transient instruction se-
quence performs computations based
on the secret, it can transmit the se-
cret to the attacker.

As already discussed, we use cache
attacks that allow building fast and
low-noise covert channels using the
CPU’s cache. Thus, the transient in-
struction sequence has to encode the
secret as a microarchitectural cache
state, similar to our toy example.

We allocate a probe array in memory
and ensure that no part of this array is
cached. To transmit the secret, the
transient instruction sequence per-
forms an indirect memory access to an
address which depends on the secret
(inaccessible) value. Line 2 of Figure 5
shifts the secret value from Step 1 by 12
bits to the left, effectively multiplying it

54 COMMUNICATIONS OF THE ACM | JUNE 2020 | VOL. 63 | NO. 6

contributed articles

and the linearity of the mapping the
randomization of the direct physical
map is usually 7 bits or lower. Hence,
the attacker can test addresses in
steps of 8GB, resulting in a maximum
of 128 memory locations to test. Start-
ing from one discovered location, the
attacker can again dump the entire
physical memory.

Windows. We successfully evaluated
Meltdown on a recent Microsoft Win-
dows 10 operating system, last updated
just before patches against Meltdown
were rolled out. In line with the results
on Linux, Meltdown can leak arbitrary
kernel memory on Windows. This is
not surprising, since Meltdown does
not exploit any software issues, but is
caused by a hardware issue.

In contrast to Linux, Windows does
not map the physical memory directly
in the kernel’s virtual address space.
Instead, a large fraction of the physical
memory is mapped in the paged pools,
nonpaged pools, and the system cache.
Windows does map the kernel into the
address space of every application.
Thus, Meltdown can read kernel mem-
ory that is mapped in the kernel ad-
dress space, that is, any part of the ker-
nel which is not swapped out, and any
page mapped in the paged and non-
paged pool, and in the system cache.

Note that there are physical pages
which are mapped in one process but
not in the (kernel) address space of an-
other process. These physical pages
cannot be attacked using Meltdown.
However, most of the physical memory
is accessible through Meltdown.

We could read the binary code of the
Windows kernel using Meltdown. To
verify that the leaked data is indeed
kernel memory, we first used the Win-
dows kernel debugger to obtain kernel
addresses containing actual data. After
leaking the data, we again used the
Windows kernel debugger to compare
the leaked data with the actual memory
content, confirming that Meltdown
can successfully leak kernel memory.

Android. We successfully evaluated
Meltdown on a Samsung Galaxy S7 mo-
bile phone running LineageOS An-
droid 14.1 with a Linux kernel 3.18.14.
The device is equipped with a Samsung
Exynos 8 Octa 8890 SoC consisting of
an ARM Cortex-A53 CPU with four
cores as well as an Exynos M1 “Mon-
goose” CPU with four cores.2 While we

were not able to mount the attack on
the Cortex-A53 CPU, we successfully
mounted Meltdown on Samsung’s cus-
tom cores. Using exception suppres-
sion via branch misprediction as de-
scribed previously, we successfully
leaked a predefined string using the
direct physical map located at the vir-
tual address 0xffff ffbf c000 0000.

Containers. We evaluated Meltdown
in containers sharing a kernel, includ-
ing Docker, LXC, and OpenVZ and
found that the attack can be mounted
without any restrictions. Running
Meltdown inside a container allows to
leak information not only from the un-
derlying kernel but also from all other
containers running on the same physi-
cal host. The commonality of most
container solutions is that every con-
tainer uses the same kernel, that is, the
kernel is shared among all containers.
Thus, every container has a valid map-
ping of the entire physical memory
through the direct-physical map of the
shared kernel. Furthermore, Meltdown
cannot be blocked in containers, as it
uses only memory accesses. Especially
with Intel TSX, only unprivileged in-
structions are executed without even
trapping into the kernel. Thus, the con-
fidentiality guarantee of containers
sharing a kernel can be entirely broken
using Meltdown. This is especially crit-
ical for cheaper hosting providers
where users are not separated through
fully virtualized machines, but only
through containers. We verified that
our attack works in such a setup, by
successfully leaking memory contents
from a container of a different user un-
der our control.

Meltdown performance. To evaluate
the performance of Meltdown, we
leaked known values from kernel
memory. This allows us to not only de-
termine how fast an attacker can leak
memory, but also the error rate, that is,
how many byte errors to expect. The
race condition in Meltdown has a sig-
nificant influence on the performance
of the attack, however, the race condi-
tion can always be won. If the targeted
data resides close to the core, for exam-
ple, in the L1 data cache, the race con-
dition is won with a high probability. In
this scenario, we achieved average
reading rates of 552.4KiB/s on average
(σ = 10.2) with an error rate of 0.009 %
(σ = 0.014) using exception suppres-

into the kernel address space in every
user process, Meltdown can also read
the entire physical memory of the tar-
get machine.

Evaluation
In this section, we evaluate Meltdown
and the performance of our proof-of-
concept implementation.a We discuss
the information Meltdown can leak,
and evaluate the performance of Melt-
down, including countermeasures.
Our results are consistent across vul-
nerable laptops, desktop PCs, mobile
phones, and cloud systems.

Leakage and environments. We
evaluated Meltdown on various operat-
ing systems with and without patches.
On all unpatched operating systems,
Meltdown can successfully leak kernel
memory. We detail the Linux, Windows
and Android evaluation here.

Linux. We successfully evaluated
Meltdown on multiple versions of the
Linux kernel, from 2.6.32 to 4.13.0,
without the patches introducing the
KAISER mechanism. On all of these
Linux kernel versions, the kernel is
mapped into the address space of user
processes, but access is prevented by
the permission settings for these ad-
dresses. As Meltdown bypasses these
permission settings, an attacker can
leak the complete kernel memory if the
virtual address of the kernel base is
known. Since all major operating sys-
tems (even 32 bit as far as possible) also
map the entire physical memory into
the kernel address space, all physical
memory can also be read.

Before kernel 4.12, kernel address
space layout randomization (KASLR)
was not enabled by default.20 Without
KASLR, the entire physical memory
was directly mapped starting at ad-
dress 0xffff 8800 0000 0000. On such
systems, an attacker can use Meltdown
to dump the entire physical memory,
simply by reading from virtual address-
es starting at 0xffff 8800 0000 0000.
When KASLR is enabled, Meltdown
can still find the kernel by searching
through the address space. An attacker
can also de-randomize the direct physi-
cal map by iterating through the virtual
address space.

On newer systems KASLR is usually
active by default. Due to the large size

a https://github.com/IAIK/meltdown/

JUNE 2020 | VOL. 63 | NO. 6 | COMMUNICATIONS OF THE ACM 55

contributed articles

Real-world Meltdown exploit. To
demonstrate the applicability of Melt-
down, we show a possible real-world
exploit that allows an attacker to steal
the secret key used to store sensitive
data. We look at VeraCrypt,12 a freeware
solution that allows users to protect
sensitive data using file or hard disk
encryption. We note that VerCrypt is
just an example, and any software that
keeps its key material in main memory
can be attacked in a similar manner.

Attack scenario. In our scenario, the
attacker gained access to the encrypt-
ed container or the encrypted hard
drive of the victim. Without the secret
key, the attacker is unable to decrypt
the data, which is therefore secure.
However, as VeraCrypt keeps the se-
cret key in the main memory, relying
on memory isolation to protect the
key from unauthorized access, an at-
tacker can use Meltdown to recover
the key. A naïve approach for that is to
dump the entire physical memory of
the computer and search in it. Howev-
er, this approach is not practical. In-
stead, we show the attacker can recov-
er the page mapping of the VeraCrypt
process and, thus, limit the amount of
data to leak. For our experiments, we
used VeraCrypt 1.22.

Breaking KASLR. As KASLR is active
on the attacked system, the attacker
must first de-randomize the kernel ad-
dress space layout to access internal
kernel structures and arbitrary physi-
cal addresses using the direct map-
ping. By locating a known value inside
the kernel, for example, the Linux ban-
ner, the randomization offset can be
computed as the difference between
the found address and the non-ran-
domized base address. The Linux
KASLR implementation only has an en-
tropy of 6 bits,15 hence there are only 64
possible randomization offsets, mak-
ing this approach practical.

Locating the VeraCrypt process. Linux
manages processes in a linked list
whose head is stored in the init_task
structure. The structure’s address is at
a fixed offset that only depends on the
kernel build and does not change when
packages are loaded. Each entry in the
task list points to the next element, al-
lowing easy traversal. Entries further
include the process id of the task, its
name and the root of the multi-level
page table, allowing the attacker to

sion on the Core i7-8700K over 10 runs
over 10 seconds. On the Core i7-6700K
we achieved on average 515.5KiB/s (σ =
5.99) with an error rate of 0.003 % on
average (σ = 0.001) and 466.3KiB/s on
average (σ = 16.75) with an error rate of
11.59 % on average (σ = 0.62) on the
Xeon E5-1630. However, with a slower
version with an average reading speed
of 137KiB/s, we were able to reduce the
error rate to zero. Furthermore, on the
Intel Core i7-6700K if the data resides
in the L3 data cache but not in the L1,
the race condition can still be won of-
ten, but the average reading rate de-
creases to 12.4KiB/s with an error rate
as low as 0.02 % using exception sup-
pression. However, if the data is un-
cached, winning the race condition is
more difficult and, thus, we have ob-
served average reading rates of less
than 10B/s on most systems. Neverthe-
less, there are two optimizations to im-
prove the reading rate: First, by simul-
taneously letting other threads
prefetch the memory locations7 of and
around the target value and access the
target memory location (with excep-
tion suppression or handling). This in-
creases the probability that the spying
thread sees the secret data value in the
right moment during the data race.
Second, by triggering the hardware
prefetcher within our own thread
through speculative accesses to memo-
ry locations of and around the target
value before the actual Meltdown at-
tack. With these optimizations, we can
improve the reading rate for uncached
data to 3.2KiB/s on average.

For all of the tests, we used
Flush+Reload as a covert channel to
leak the memory as described, and In-
tel TSX to suppress the exception. For
brevity, we omit the results of evaluat-
ing exception suppression using con-
ditional branches. See Kocher et al.17
for further information.

Limitations on ARM and AMD. We
verified that some of the processors list-
ed as not affected (see the table) are not
vulnerable. Specifically, we experiment-
ed with some AMD and Arm-based pro-
cessors and were unable to reproduce
Meltdown on those. We nevertheless
note that for both ARM and AMD, the
toy example works reliably, indicating
that out-of-order execution generally oc-
curs and instructions past illegal mem-
ory accesses are also performed.

Meltdown is a
security issue
rooted in hardware.
Thus, to fully
mitigate Meltdown,
the hardware of
modern CPUs must
be modified.

56 COMMUNICATIONS OF THE ACM | JUNE 2020 | VOL. 63 | NO. 6

contributed articles

formance optimizations change the
microarchitectural state, how this
state can be lifted into an architectur-
al state, and how such attacks can be
prevented. Without requiring any soft-
ware vulnerability and independent
of the operating system, Meltdown
enables an adversary to read sensitive
data of other processes, containers,
virtual machines, or the kernel. KAI-
SER is a reasonable short-term work-
around to prevent large-scale exploita-
tion of Meltdown until hardware fixes
are deployed.

Acknowledgments. Several authors
of this article found Meltdown indepen-
dently, ultimately leading to this collab-
oration, and we thank everyone who
helped make this collaboration possi-
ble. We thank Mark Brand from Google
Project Zero, Peter Cordes and Henry
Wong as well as Intel, ARM, Qualcomm,
and Microsoft for feedback.

D. Gruss, M. Lipp, S. Mangard and
M. Schwarz were supported by the Eu-
ropean Research Council (ERC) under
the European Union’s Horizon 2020
research and innovation programme
(grant agreement No 681402). D. Gen-
kin was supported by NSF awards
#1514261 and #1652259, financial as-
sistance award 70NANB15H328 from
the U.S. Department of Commerce,
NIST, the 2017-2018 Rothschild Post-
doctoral Fellowship, and the Defense
Advanced Research Project Agency
(DARPA) under Contract #FA8650-
16-C-7622.

References
1. Bhattacharyya, A. et al. SMoTherSpectre: Exploiting

speculative execution through port contention. In
Proceedings of 2019 CCS, 785–800.

2. Burgess, B. Samsung Exynos M1 Processor. IEEE Hot
Chips (2016).

3. Canella, C. et al. Fallout: Leaking data on Meltdown-
resistant CPUs. In Proceedings of 2019 CCS.

4. Canella, C. et al. A systematic evaluation of transient
execution attacks and defenses. USENIX Sec (2019),
249–266.

5. Ge, Q., Yarom, Y., Cock, D., and Heiser, G. A
survey of microarchitectural timing attacks and
countermeasures on contemporary hardware. JCEN
8, 1 (2018).

6. Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice,
C., and Mangard, S. KASLR is Dead: Long Live KASLR.
In Proceedings of Intern. 2017 Symposium on
Engineering Secure Software and Systems. Springer,
161–176.

7. Gruss, D., Maurice, C., Fogh, A., Lipp, M., and Mangard,
S. Prefetch side-channel attacks: Bypassing SMAP
and Kernel ASLR. In Proceedings of 2016 CCS.

8. Gruss, D., Maurice, C., Wagner, K., and Mangard, S.
Flush + Flush: A fast and stealthy cache attack. In
Proceedings of DIMVA, 2016.

9. Gruss, D., Spreitzer, R., and Mangard, S. Cache
template attacks: Automating attacks on inclusive
last-level caches. In Proceedings of USENIX Security
Symposium, 2015.

10. Hennessy, J.L., and Patterson, D.A. Computer
Architecture: A Quantitative Approach, 5th Ed. Morgan

Kaufmann, San Francisco, CA, USA, 2011.
11. Hund, R., Willems, C., and Holz, T. Practical timing

side channel attacks against kernel space ASLR. S&P
(2013).

12. IDRIX. VeraCrypt; https://veracrypt.fr 2018.
13. Intel. An introduction to the intel quickpath

interconnect, Jan 2009.
14. Intel. Rogue system register read, 2018;

https://software.intel.com/security-software-
guidance/software-guidance/

15. Jang, Y., Lee, S., and Kim, T. Breaking kernel address
space layout randomization with Intel TSX. In
Proceedings of 2016 CCS.

16. Kiriansky, V., and Waldspurger, C. Speculative buffer
overflows: Attacks and defenses., 2018; arXiv 1807.03757.

17. Kocher, P. et al. Spectre attacks: Exploiting speculative
execution. S&P (2019).

18. Miller, M. Speculative store bypass, https://blogs.
technet.microsoft.com/srd/2018/05/21/analysis-and-
mitigation-of-speculative-store-bypass/

19. Osvik, D.A., Shamir, A. and Tromer, E. Cache
attacks and countermeasures: The case of AES. In
Proceedings of 2006 CT-RSA.

20. Phoronix. Linux 4.12 To Enable KASLR By Default;
http://bit.ly/2FVuoXz

21. Schwarz, M. et al. ZombieLoad: Cross-privilege-
boundary data sampling. In Proceedings of 2019 CCS..

22. Schwarz, M., Schwarzl, M., Lipp, M., Masters, J., and
Gruss, D. NetSpectre: Read arbitrary memory over
network. In Proceedings of ESORICS, 2019.

23. Sorin, D.J., Hill, M.D., and Wood, D.A. A Primer on
Memory Consistency and Cache Coherence. 2011.

24. Stecklina, J., and Prescher, T. LazyFP: Leaking FPU
register state using microarchitectural side-channels,
2018; arXiv 1806.07480.

25. Van Bulck, J. et al. Foreshadow: Extracting the keys
to the Intel SGX kingdom with transient out-of-order
execution. USENIX Sec. (Aug. 2018).

26. van Schaik, S., Milburn, A., Österlund, S., Frigo, P.,
Maisuradze, G., Razavi, K., Bos, H., and Giuffrida, C.
RIDL: Rogue in-flight data load. S&P (May 2019).

27. Weisse, O. et al. Foreshadow-NG: Breaking the virtual
memory abstraction with transient out-of-order
execution; https://foreshadowattack.eu/foreshadow-
NG.pdf 2018.

28. Yarom, Y., and Falkner, K. Flush + Reload: A high
resolution, low noise, L3 cache side-channel attack. In
Proceedings of USENIX Security Symposium, 2014..

29. Zhang, Y., Juels, A., Reiter, M.K., and Ristenpart, T.
Cross-tenant side-channel attacks in PaaS clouds. In
Proceedings of 2014 CCS.

Moritz Lipp is a Ph.D. candidate at Graz University of
Technology, Flanders, Austria.

Michael Schwarz is a postdoctoral researcher at Graz
University of Technology, Flanders, Austria.

Daniel Gruss is an assistant professor at Graz University
of Technology, Flanders, Austria.

Thomas Prescher is a chief architect at Cyberus
Technology GmbH, Dresden, Germany.

Werner Haas is the Chief Technology Officer at Cyberus
Technology GmbH, Dresden, Germany.

Jann Horn is a member of Project Zero at Google Project
Zero, Zurich, Switzerland.

Stefan Mangard is a professor at Graz University of
Technology, Flanders, Austria.

Paul Kocher is an entrepreneur and researcher focused
on cryptography and data security, San Francisco, CA,
USA.

Daniel Genkin is an assistant professor at the University
of Michigan, Ann Arbor, MI, USA.

Yuval Yarom is a senior lecturer at the University of
Adelaide and Data61, South Australia.

Mike Hamburg is a researcher in the Cryptography
Research Division of Rambus, Sunnyvale, CA, USA.

Raoul Strackx is a senior engineer at Fortanix,
Flanders, Belgium.

Copyright held by authors/owners.
Publication rights licensed to ACM.

identify the VeraCrypt process and to
locate its page map.

Extracting the encryption key. The at-
tacker can now traverse the paging
structures and read the memory used by
the process directly. VeraCrypt stores
the DataAreaKey in a SecureBuffer in
the VolumeHeader of a Volume. If ASLR
is not active, the attacker can directly
read the key from the offset where the
key is located. Otherwise, the attacker
searches the memory for a suitable
pointer from which it can track the data
structures to the stored key.

With the extracted key, the attacker
can decrypt the container image, giv-
ing full access to the stored sensitive
data. This attack does not only apply to
VeraCrypt but to every software that
keeps its key material stored in main
memory.

Countermeasures
Fundamentally, Meltdown is a secu-
rity issue rooted in hardware. Thus,
to fully mitigate Meltdown, the hard-
ware of modern CPUs must be modi-
fied. Indeed, since the original publi-
cation of Meltdown, Intel has released
9th-generation i-cores, which contain
hardware mechanisms that mitigate
Meltdown.

For older vulnerable hardware, low-
er performing software mitigations do
exist. More specifically, Gruss et al.6
proposed KAISER, a kernel modifica-
tion to not have the kernel mapped in
the user space. While this modification
was intended to prevent side-channel
attacks breaking KASLR,7,11,15 it also
prevents Meltdown, as it ensures there
is no valid mapping to kernel space or
physical memory available in user
space. Since the publication of Melt-
down, Kernel Page Table Isolation
(which is an implementation of KAI-
SER) has been adopted by all major op-
erating systems.

Conclusion
Meltdown fundamentally changes our
perspective on the security of hard-
ware optimizations that change the
state of microarchitectural elements.
Meltdown and Spectre teach us that
functional correctness is insufficient
for security analysis and the micro-
architecture cannot be ignored. They
further open a new field of research
to investigate the extent to which per-

