
This paper is included in the Proceedings of the 
25th USENIX Security Symposium

August 10–12, 2016 • Austin, TX

ISBN 978-1-931971-32-4

Open access to the Proceedings of the 
25th USENIX Security Symposium 

is sponsored by USENIX 

DRAMA: Exploiting DRAM Addressing  
for Cross-CPU Attacks

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Mangard,  
Graz University of Technology

 https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl



USENIX Association  25th USENIX Security Symposium 565

DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz and Stefan Mangard
Graz University of Technology, Austria

Abstract
In cloud computing environments, multiple tenants are

often co-located on the same multi-processor system.
Thus, preventing information leakage between tenants is
crucial. While the hypervisor enforces software isola-
tion, shared hardware, such as the CPU cache or mem-
ory bus, can leak sensitive information. For security rea-
sons, shared memory between tenants is typically dis-
abled. Furthermore, tenants often do not share a physical
CPU. In this setting, cache attacks do not work and only
a slow cross-CPU covert channel over the memory bus is
known. In contrast, we demonstrate a high-speed covert
channel as well as the first side-channel attack working
across processors and without any shared memory. To
build these attacks, we use the undocumented DRAM
address mappings.

We present two methods to reverse engineer the map-
ping of memory addresses to DRAM channels, ranks,
and banks. One uses physical probing of the memory
bus, the other runs entirely in software and is fully au-
tomated. Using this mapping, we introduce DRAMA at-
tacks, a novel class of attacks that exploit the DRAM row
buffer that is shared, even in multi-processor systems.
Thus, our attacks work in the most restrictive environ-
ments. First, we build a covert channel with a capacity
of up to 2 Mbps, which is three to four orders of mag-
nitude faster than memory-bus-based channels. Second,
we build a side-channel template attack that can automat-
ically locate and monitor memory accesses. Third, we
show how using the DRAM mappings improves existing
attacks and in particular enables practical Rowhammer
attacks on DDR4.

1 Introduction

Due to the popularity of cloud services, multiple tenants
sharing the same physical server through different vir-
tual machines (VMs) is now a common situation. In

such settings, a major requirement is that no sensitive
information is leaked between tenants, therefore proper
isolation mechanisms are crucial to the security of these
environments. While software isolation is enforced by
hypervisors, shared hardware presents risks of informa-
tion leakage between tenants. Previous research shows
that microarchitectural attacks can leak secret informa-
tion of victim processes, e.g., by clever analysis of data-
dependent timing differences. Such side-channel mea-
surements allow the extraction of secret information like
cryptographic keys or enable communication over isola-
tion boundaries via covert channels.

Cloud providers can deploy different hardware config-
urations, however multi-processor systems are becoming
ubiquitous due to their numerous advantages. They offer
high peak performance for parallelized tasks while en-
abling sharing of other hardware resources such as the
DRAM. They also simplify load balancing while still
keeping the area and cost footprint low. Additionally,
cloud providers now commonly disable memory dedu-
plication between VMs for security reasons.

To attack such configurations, successful and practical
attacks must comply with the following requirements:

1. Work across processors: As these configurations
are now ubiquitous, an attack that does not work
across processors is severely limited and can be triv-
ially mitigated by exclusively assigning processors
to tenants or via the scheduler.

2. Work without any shared memory: With memory
deduplication disabled, shared memory is not avail-
able between VMs. All attacks that require shared
memory are thus completely mitigated in cross-VM
settings with such configurations.

In the last years, the most prominent and well-studied
example of shared-hardware exploits is cache attacks.
They use the processor-integrated cache and were shown
to be effective in a multitude of settings, such as cross-
VM key-recovery attacks [9, 12, 20, 30], including at-
tacks across cores [5, 14, 16, 28]. However, due to the
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cache being local to the processor, these attacks do not
work across processors and thus violate requirement 1.
Note that in a recent concurrent work, Irazoqui et al.
[11] presented a cross-CPU cache attack which exploits
cache coherency mechanisms in multi-processor sys-
tems. However, their approach requires shared mem-
ory and thus violates requirement 2. The whole class
of cache attacks is therefore not applicable in multi-
processor systems without any shared memory.

Other attacks leverage the main memory that is
a shared resource even in multi-processor systems.
Xiao et al. [26] presented a covert channel that exploits
memory deduplication. This covert channel has a low
capacity and requires the availability of shared memory,
thus violating requirement 2. Wu et al. [25] presented a
covert channel exploiting the locking mechanism of the
memory bus. While this attack works across processors,
the capacity of the covert channel is orders of magnitude
lower than that of current cache covert channels.

Therefore, only a low capacity covert channel and no
side-channel have been showed with the two aforemen-
tioned requirements so far. In contrast, we demonstrate
two attacks that do not use shared memory and work
across processors: a high-speed covert channel as well
as the first side-channel attack.

Contributions. Our attacks require knowledge of the un-
documented mapping of memory addresses to DRAM
channels, ranks, and banks. We therefore present two
methods to reverse engineer this mapping. The first
method retrieves the correct addressing functions by per-
forming physical probing of the memory bus. The sec-
ond method is entirely software-based, fully automatic,
and relies only on timing differences.1 Thus, it can be
executed remotely and enables finding DRAM address
mappings even in VMs in the cloud. We reverse en-
gineered the addressing functions on a variety of pro-
cessors and memory configurations. Besides consumer-
grade PCs, we also analyzed a dual-CPU server system
– similar to those found in cloud setups – and multiple
recent smartphones.

Using this reverse-engineered mapping, we present
DRAMA attacks, a novel class of attacks that exploit
the DRAM Addressing. In particular, they leverage
DRAM row buffers that are a shared component in multi-
processor systems. Our attacks require that at least one
memory module is shared between the attacker and the
victim, which is the case even in the most restrictive set-
tings. In these settings, attacker and victim cannot ac-
cess the same memory cells, i.e., we do not circumvent
system-level memory isolation. We do not make any as-
sumptions on the cache, nor on the location of executing

1The source code of this reverse-engineering tool and exem-
plary DRAMA attacks can be found at https://github.com/IAIK/
drama.

cores, nor on the availability of shared memory such as
cross-VM memory deduplication.

First, we build a covert channel that achieves transmis-
sion rates of up to 2 Mbps, which is three to four orders
of magnitude faster than previously presented memory-
bus based channels. Second, we build a side channel that
allows to automatically locate and monitor memory ac-
cesses, e.g., user input or server requests, by perform-
ing template attacks. Third, we show how the reverse-
engineered mapping can be used to improve existing at-
tacks. Existing Flush+Reload cache attacks use an in-
correct cache-miss threshold, introducing noise and re-
ducing the spatial accuracy. Knowledge of the DRAM
address mapping also enables practical Rowhammer at-
tacks on DDR4.

Outline. The remainder of the paper is organized as fol-
lows. In Section 2, we provide background information
on side channels on shared hardware, on DRAM, and
on the Rowhammer attack. In Section 3, we provide
definitions that we use throughout the paper. In Sec-
tion 4, we describe our two approaches to reverse engi-
neer the DRAM addressing and we provide the reverse-
engineered functions. In Section 5, we build a high-
speed cross-CPU DRAMA covert channel. In Section 6,
we build a highly accurate cross-CPU DRAMA side
channel attack. In Section 7, we show how the knowl-
edge of the DRAM addressing improves cache attacks
like Flush+Reload and we show how it makes Rowham-
mer attacks practical on DDR4 and more efficient on
DDR3. We discuss countermeasures against our attack
in Section 8. We conclude in Section 9.

2 Background and related work

In this section, we discuss existing covert and side chan-
nels and give an introduction to DRAM. Furthermore, we
briefly explain the Rowhammer bug and its implications.

2.1 Hardware covert and side channels
Attacks exploiting hardware sharing can be grouped into
two categories. In side-channel attacks, an attacker spies
on a victim and extracts sensitive information such as
cryptographic keys. In covert channels however, sender
and receiver are actively cooperating to exchange infor-
mation in a setting where they are not allowed to, e.g.,
across isolation boundaries.

Cache attacks. Covert and side channels using the CPU
cache exploit the fact that cache hits are faster than
cache misses. The methods Prime+Probe [14,16,19] and
Flush+Reload [2, 12, 28] have been presented to either
build covert or side channels. These two methods work
at a different granularity: Prime+Probe can spy on cache
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sets, while Flush+Reload has the finer granularity of a
cache line but requires shared memory, such as shared
libraries or memory deduplication.

Attacks targeting the last-level cache are cross-core,
but require the sender and receiver to run on the same
physical CPU. Gruss et al. [5] implemented cross-core
covert channels using Prime+Probe and Flush+Reload
as well as a new one, Flush+Flush, with the same
protocol to normalize the results. The covert channel
using Prime+Probe achieves 536 Kbps, Flush+Reload
2.3 Mbps, and Flush+Flush 3.8 Mbps. The most recent
cache attack by Irazoqui et al. [11] exploits cache co-
herency mechanisms and work across processors. It
however requires shared memory.

An undocumented function maps physical addresses
to the slices of the last-level cache. However, this func-
tion has been reverse engineered in previous work [9,15,
29], enhancing existing attacks and enabling attacks in
new environments.

Memory and memory bus. Xiao et al. [26] presented
a covert channel that exploits memory deduplication. In
order to save memory, the hypervisor searches for identi-
cal pages in physical memory and merges them across
VMs to a single read-only physical page. Writing to
this page triggers a copy-on-write page fault, incurring
a significantly higher latency than a regular write access.
The authors built a covert channel that achieves up to
90 bps, and 40 bps on a system under memory pressure.
Wu et al. [25] proposed a bus-contention-based covert
channel, that uses atomic memory operations locking the
memory bus. This covert channel achieves a raw band-
width of 38 Kbps between two VMs, with an effective
capacity of 747 bps with error correction.

2.2 DRAM organization
Modern DRAM is organized in a hierarchy of channels,
DIMMs, ranks, and banks. A system can have one or
more channels, which are physical links between the
DRAM modules and the memory controller. Channels
are independent and can be accessed in parallel. This
allows distribution of the memory traffic, increasing the
bandwidth, and reducing the latency in many cases. Mul-
tiple Dual Inline Memory Modules (DIMMs), which are
the physical memory modules attached to the mainboard,
can be connected to each channel. A DIMM typically has
one or two ranks, which often correspond to the front
and back of the physical module. Each rank is com-
posed of banks, typically 8 on DDR3 DRAM and 16 on
DDR4 DRAM. In the case of DDR4, banks are addition-
ally grouped into bank groups, e.g., 4 bank groups with
4 banks each. Banks finally contain the actual memory
arrays which are organized in rows (typically 214 to 217)
and columns (often 210). On PCs, the DRAM word size

and bus width is 64 bits, resulting in a typical row size of
8 KB. As channel, rank and bank form a hierarchy, two
addresses can only be physically adjacent in the DRAM
chip if they are in the same channel, DIMM, rank and
bank. In this case we just use the term same bank.

The memory controller, which is integrated into mod-
ern processors, translates physical addresses to channels,
DIMMs, ranks, and banks. AMD publicly documents the
addressing function used by its products (see, e.g., [1, p.
345]), however to the best of our knowledge Intel does
not. The mapping for one Intel Sandy Bridge machine in
one memory configuration has been reverse engineered
by Seaborn [23]. However, Intel has changed the map-
ping used in its more recent microarchitectures. Also,
the mapping necessarily differs when using other mem-
ory configurations, e.g., a different number of DIMMs.

The row buffer. Apart from the memory array, each
bank also features a row buffer between the DRAM cells
and the memory bus. From a high-level perspective, it
behaves like a directly-mapped cache and stores an entire
DRAM row. Requests to addresses in the currently active
row are served directly from this buffer. If a different row
needs to be accessed, then the currently active row is first
closed (with a pre-charge command) and then the new
row is fetched (with a row-activate command). We call
such an event a row conflict. Naturally, such a conflict
leads to significantly higher access times compared to re-
quests to the active row. This timing difference will later
serve as the basis for our attacks and for the software-
based reverse-engineering method. Note that after each
refresh operation, a bank is already in the pre-charged
state. In this case, no row is currently activated.

Independently of our work, Hassan et al. [7] also pro-
posed algorithms to reverse engineer DRAM functions
based on timing differences. However, their approach
requires customized hardware performance-monitoring
units. Thus, they tested their approach only in a simu-
lated environment and not on real systems. Concurrently
to our work, Xiao et al. [27] proposed a method to re-
verse engineer DRAM functions based on the timing dif-
ferences caused by row conflicts. Although their method
is similar to ours, their focus is different, as they used
the functions to then perform Rowhammer attacks across
VMs.

DRAM organization for multi-CPU systems. In mod-
ern multi-CPU server systems, each CPU features a ded-
icated memory controller and attached memory. The
DRAM is still organized in one single address space and
is accessible by all processors. Requests for memory at-
tached to other CPUs are sent over the CPU interconnect,
e.g., Intel’s QuickPath Interconnect (QPI). This memory
design is called Non-Uniform Memory Access (NUMA),
as the access time depends on the memory location.
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On our dual Haswell-EP setup, the organization of this
single address space can be configured for the expected
workload. In interleaved mode, the memory is split into
small slices which are spliced together in an alternating
fashion. In non-interleaved mode, each CPUs memory
is kept in one contiguous physical-address block. For
instance, the lower half of the address space is mapped to
the first CPUs memory, whereas the upper half is mapped
to the second CPUs memory.

2.3 The Rowhammer bug
The increasing DRAM density has led to physically
smaller cells, which can thus store smaller charges. As a
result, the cells have a lower noise margin and the level
of parasitic electrical interaction is potentially higher, re-
sulting in the so-called Rowhammer bug [8, 13, 18].

This bug results in corruption of data, not in rows that
are directly accessed, but rather in adjacent ones. When
performing random memory accesses, the probability for
such faults is virtually zero. However, it rises drastically
when performing accesses in a certain pattern. Namely,
flips can be caused by frequent activation (hammering) of
adjacent rows. As data needs to be served from DRAM
and not the cache, an attack needs to either flush data
from the cache using the clflush instruction in native
environments [13], or using cache eviction in other more
restrictive environments, e.g., JavaScript [4].

Seaborn [22] implemented two attacks that exploit the
Rowhammer bug, showing the severity of faulting single
bits for security. The first exploit is a kernel privilege es-
calation on a Linux system, caused by a bit flip in a page
table entry. The second one is an escape of Native Client
sandbox caused by a bit flip in an instruction sequence
for indirect jumps.

3 Definitions

In this section we provide definitions for the terms row
hit and row conflict. These definitions provide the basis
for our reverse engineering as well as the covert and side
channel attacks.

Every physical memory location maps to one out of
many rows in one out of several banks in the DRAM.
Considering a single access to a row i in a bank there are
two major possible cases:

1. The row i is already opened in the row buffer. We
call this case a row hit.

2. A different row j �= i in the same bank is opened.
We call this case a row conflict.

Considering frequent alternating accesses to two (or
more) addresses we distinguish three cases:

1. The addresses map to different banks. In this case
the accesses are independent and whether the ad-

dresses have the same row indices has no influence
on the timing. Row hits are likely to occur for the
accesses, i.e., access times are low.

2. The addresses map to the same row i in the same
bank. The probability that the row stays open in
between accesses is high, i.e., access times are low.

3. The addresses map to the different rows i �= j in the
same bank. Each access to an address in row i will
close row j and vice versa. Thus, row conflicts oc-
cur for the accesses, i.e., access times are high.

To measure the timing differences of row hits and row
conflicts, data has to be flushed from the cache. Fig-
ure 1 shows a comparison of standard histograms of ac-
cess times for cache hits and cache misses. Cache misses
are further divided into row hits and row conflicts. For
this purpose an unrelated address in the same row was ac-
cessed to cause a row hit and an unrelated address in the
same bank but in a different row was accessed to cause a
row conflict. We see that from 180 to 216 cycles row hits
occur, but no row conflicts (cf. highlighted area in Fig-
ure 1). In the remainder, we build different attacks that
are based on this timing difference between row hits and
row conflicts.

4 Reverse engineering DRAM addressing

In this section, we present our reverse engineering of the
DRAM address mapping. We discuss two approaches,
the first one is based on physical probing, whereas the
second one is entirely software-based and fully auto-
mated. Finally, we present the outcome of our analy-
sis, i.e., the reverse-engineered mapping functions. In
the remainder of this paper, we denote with a a physical
memory address. ai denotes the i-th bit of an address.

4.1 Linearity of functions
The DRAM addressing functions are reverse engineered
in two phases. First, a measuring phase and second, a
subsequent solving phase. Our solving approaches re-
quire that the addressing functions are linear, i.e., they
are XORs of physical-address bits.

In fact, Intel used such functions in earlier microar-
chitectures. For instance, Seaborn [23] reports that on
his Sandy Bridge setup the bank address is computed by
XORing the bits a14..a16 with the lower bits of the row
number (a18..a20) (cf. Figure 4a). This is done in order to
minimize the number of row conflicts during runtime. In-
tel also uses linear functions for CPU-cache addressing.
Maurice et al. [15] showed that the complex addressing
function, which is used to select cache slices, is an XOR
of many physical-address bits.

As it turns out, linearity holds on all our tested config-
urations. However, there are setups in which it might be
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Figure 1: Histogram for cache hits and cache misses divided into row hits and row conflicts on the Ivy Bridge i5 test
system. Measurements were performed after a short idle period to simulate non-overlapping accesses by victim and
spy. From 180 to 216 cycles row hits occur, but no row conflicts.

violated, such as triple-channel configurations. We did
not test such systems and leave a reverse engineering to
future work.

4.2 Reverse engineering using physical
probing

Our first approach to reverse engineer the DRAM map-
ping is to physically probe the memory bus and to di-
rectly read the control signals. As shown in Figure 2,
we use a standard passive probe to establish contact with
the pin at the DIMM slot. We then repeatedly accessed
a selected physical address2 and used a high-bandwidth
oscilloscope to measure the voltage and subsequently de-
duce the logic value of the contacted pin. Note that due
to the repeated access to a single address, neither a timely
location of specific memory requests nor distinguishing
accesses to the chosen address from other random ones
is required.

We repeated this experiment for many selected ad-
dresses and for all pins of interest, namely the bank-
address bits (BA0, BA1, BA2 for DDR3 and BG0, BG1,
BA0, BA1 for DDR4) for one DIMM and the chip select
CS for half the DIMMs.

For the solving phase we use the following approach.
Starting from the top-layer (channel or CPU addressing)
and drilling down, for each DRAM addressing function
we create an over-defined system of linear equations in
the physical address bits. The left-hand-side of this sys-
tem is made up of the relevant tested physical addresses.
For instance, for determining the bank functions we only
use addresses that map to the contacted DIMMs chan-
nel. The right-hand-side of the system of equations are
the previously measured logic values for the respective

2Resolving virtual to physical addresses requires root privileges in
Linux. Given that we need physical access to the internals of the sys-
tem, this is a very mild prerequisite.

Figure 2: Physical probing of the DIMM slot.

address and the searched-for function. The logic values
for CPU and channel addressing are computed by simply
ORing all respective values for the chip-select pins. We
then solve this system using linear algebra. The solution
is the corresponding DRAM addressing function.

Obviously, this reverse-engineering approach has
some drawbacks. First, expensive measurement equip-
ment is needed. Second, it requires physical access to
the internals of the tested machine. However, it has the
big advantage that the address mapping can be recon-
structed for each control signal individually and exactly.
Thus, we can determine the exact individual functions
for the bus pins. Furthermore, every platform only needs
to be measured only once in order to learn the addressing
functions. Thus, an attacker does not need physical ac-
cess to the concrete attacked system if the measurements
are performed on a similar machine.
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Figure 3: Histogram of average memory access times
for random address pairs on our Haswell test system. A
clear gap separates the majority of address pairs causing
no row conflict (lower access times), because they map
to different banks, from the few address pairs causing a
row conflict (higher access times), because they map to
different rows in the same bank.

4.3 Fully automated reverse engineering
For our second approach to reverse engineer the DRAM
mapping we exploit the fact that row conflicts lead to
higher memory access times. We use the resulting timing
differences to find sets of addresses that map to the same
bank but to a different row. Subsequently, we determine
the addressing functions based on these sets. The entire
process is fully automated and runs in unprivileged and
possibly restricted environments.

Timing analysis. In the first step, we aim to find same-
bank addresses in a large array mapped into the attackers’
address space. For this purpose, we perform repeated al-
ternating access to two addresses and measure the aver-
age access time. We use clflush to ensure that each ac-
cess is served from DRAM and not from the CPU cache.
As shown in Figure 3, for some address pairs the access
time is significantly higher than for most others. These
pairs belong to the same bank but to different rows. The
alternating access causes frequent row conflicts and con-
sequently the high latency.

The tested pairs are drawn from an address pool,
which is built by selecting random addresses from a large
array. A small subset of addresses in this pool is tested
against all others in the pool. The addresses are sub-
sequently grouped into sets having the same channel,
DIMM, rank, and bank. We try to identify as many such
sets as possible in order to reconstruct the addressing
functions.

Function reconstruction. In the second phase, we use
the identified address sets to reconstruct the addressing
functions. This reconstruction requires (at least partial)
resolution of the tested virtual addresses to physical ones.
Similar as later in Section 5.1, one can use either the
availability of 2 MB pages, 1 GB pages, or privileged in-
formation such as the virtual-to-physical address transla-

tion that can be obtained through /proc/pid/pagemap

in Linux systems.
In the case of 2 MB pages we can recover all partial

functions up to bit a20, as the lowest 21 bit of virtual
and physical address are identical. On many systems the
DRAM addressing functions do not use bits above a20
or only few of them, providing sufficient information to
mount covert and side-channel attacks later on. In the
case of 1 GB pages we can recover all partial functions
up to bit a30. This is sufficient to recover the full DRAM
addressing functions on all our test systems. If we have
full access to physical address information we will still
ignore bits a30 and upwards. These bits are typically only
used for DRAM row addressing and they are very un-
likely to play any role in bank addressing. Additionally,
we ignore bits (a0..a5) as they are used for addressing
within a cache line.

The search space is then small enough to perform a
brute-force search of linear functions within seconds.
For this, we generate all linear functions that use exactly
n bits as coefficients and then apply them to all addresses
in one randomly selected set. We start with n = 1 and
increment n subsequently to find all functions. Only if
the function has the same result for all addresses in a set,
we test this potential function on all other sets. How-
ever, in this case we only pick one address per set and
test whether the function is constant over all sets. If so,
the function is discarded. We obtain a list of possible ad-
dressing functions that also contains linear combinations
of the actual DRAM addressing functions. We prioritize
functions with a lower number of coefficients, i.e., we
remove higher-order functions which are linear combi-
nations of lower-order ones. Depending on the random
address selection, we now have a complete set of correct
addressing functions. We verify the correctness either by
comparing it to the results from the physical probing, or
by performing a software-based test, i.e., verifying the
timing differences on a larger set of addresses, or veri-
fying that usage of the addressing functions in Rowham-
mer tests increases the number of bit flips per second by
a factor that is the number of sets we found.

Compared to the probing approach, this purely
software-based method has significant advantages. It
does not require any additional measurement equipment
and can be executed on a remote system. We can identify
the functions even from within VMs or sandboxed pro-
cesses if 2 MB or 1 GB pages are available. Furthermore,
even with only 4 KB pages we can group addresses into
sets that can be directly used for covert or side channel at-
tacks. This software-based approach also allows reverse
engineering in settings where probing is not easily possi-
ble anymore, such as on mobile devices with hard-wired
ball-grid packages. Thus, it allowed us to reverse engi-
neer the mapping on current ARM processors.
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Table 1: Experimental setups.

CPU / SoC Microarch. Mem.

i5-2540M Sandy Bridge DDR3
i5-3230M Ivy Bridge DDR3

i7-3630QM Ivy Bridge DDR3
i7-4790 Haswell DDR3

i7-6700K Skylake DDR4
2x Xeon E5-2630 v3 Haswell-EP DDR4

Qualcomm Snapdragon S4 Pro ARMv7 LPDDR2
Samsung Exynos 5 Dual ARMv7 LDDDR3

Qualcomm Snapdragon 800 ARMv7 LPDDR3
Qualcomm Snapdragon 820 ARMv8-A LPDDR3

Samsung Exynos 7420 ARMv8-A LPDDR4

One downside of the software-based approach is that
it cannot recover the exact labels (BG0, BA0, ...) of the
functions. Thus, we can only guess whether the recon-
structed function computes a bank address bit, rank bit,
or channel bit. Note that assigning the correct labels to
functions is not required for any of our attacks.

4.4 Results

We now present the reverse-engineered mappings for all
our experimental setups. We analyzed a variety of sys-
tems (Table 1), including a dual-CPU Xeon system, that
can often be found in cloud systems, and multiple current
smartphones. Where possible, we used both presented
reverse-engineering methods and cross-validated the re-
sults.

We found that the basic scheme is always as follows.
On PCs, the memory bus is 64 bits wide, yet the small-
est addressable unit is a byte. Thus, the three lower bits
(a0..a2) of the physical address are used as byte index
into a 64-bit (8-byte) memory word and they are never
transmitted on the memory bus. Then, the next bits are
used for column selection. One bit in between is used for
channel addressing. The following bits are responsible
for bank, rank, and DIMM addressing. The remaining
upper bits are used for row selection.

The detailed mapping, however, differs for each setup.
To give a quick overview of the main differences, we
show the mapping of one selected memory configuration
for multiple Intel microarchitectures and ARM-based
SoCs in Figure 4. Here we chose a configuration with
two equally sized DIMMs in dual-channel configuration,
as it is found in many off-the-shelf consumer PCs. All
our setups use dual-rank DIMMs and use 10 bits for
column addressing. Figure 4a shows the mapping on
the Sandy Bridge platform, as reported by Seaborn [23].
Here, only a6 is used to select the memory channel, a17 is
used for rank selection. The bank-address bits are com-

puted by XORing bits a14..a16 with the lower bits of the
row index (a18..a20).

...678911 1012131416171819202122...

BA0
BA1
BA2

Ch.

15

Rank

(a) Sandy Bridge – DDR3 [23].

...678911 1012131416171819202122...

BA0
BA1

Rank

Ch.

15

BA2

(b) Ivy Bridge / Haswell – DDR3.

...678911 1012131416171819202122...

BG0
BG1

Rank
BA0

Ch.

15

BA1

(c) Skylake – DDR4.

...678911 1012131416171819202122...

Rank

BG0

BG1
BA0

Ch.

15

BA1

23242526

CPU

(d) Dual Haswell-EP (Interleaved Mode) – DDR4.

...678911 1012131416171819202122...

Rank
BA0
BA1

Ch.

15

BA2

(e) Samsung Exynos 7420 – LPDDR4.

Figure 4: Reverse engineered dual channel mapping (1
DIMM per channel) for different architectures.

The channel selection function changed with later mi-
croarchitectures, such as Ivy Bridge and Haswell. As
shown in Figure 4b, the channel-selection bit is now
computed by XORing seven bits of the physical address.
Further analysis showed that bit a7 is used exclusively,
i.e., it is not used as part of the row- or column address.
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Additionally, rank selection is now similar to bank ad-
dressing and also uses XORs.

Our Skylake test system uses DDR4 instead of DDR3.
Due to DDR4’s introduction of bank grouping and the
doubling of the available banks (now 16), the addressing
function necessarily changed again. As shown in Fig-
ure 4c, a7 is not used for channel selection anymore, but
for bank addressing instead.

Figure 4d depicts the memory mapping of a dual-
CPU Haswell-EP system equipped with DDR4 mem-
ory. It uses 2 modules in dual-channel configuration
per CPU (4 DIMMs in total). In interleaved mode (cf.
Section 2.2), the chosen CPU is determined as a7 ⊕ a17.
Apart from the different channel function, there is also a
difference in the bank addressing, i.e., bank addressing
bits are shifted. The range of bits used for row indexing
is now split into address bits (a17..a19) and a23 upwards.

The mapping used on one of our mobile platforms,
a Samsung Galaxy S6 with an Exynos 7420 ARMv8-
A SoC and LPDDR4 memory, is much simpler (cf. Fig-
ure 4e). Here physical address bits are mapped directly to
bank address bits. Rank and channel are computed with
XORs of only two bits each. The bus width of LPDDR4
is 32 bits, so only the two lowest bits are used for byte
indexing in a memory word.

Table 2 shows a comprehensive overview of all plat-
forms and memory configurations we analyzed. As all
found functions are linear, we simply list the index of
the physical address bits that are XORed together. With
the example of the Haswell microarchitecture, one can
clearly see that the indices are shifted to accommodate
for the different memory setups. For instance, in single-
channel configurations a7 is used for column instead of
channel selection, which is why bank addressing starts
with a13 instead of a14.

5 A high-speed cross-CPU covert channel

In this section, we present a first DRAMA attack, namely
a high-speed cross-CPU covert channel that does not
require shared memory. Our channel exploits the row
buffer, which behaves like a directly-mapped cache. Un-
like cache attacks, the only prerequisite is that two com-
municating processes have access to the same memory
module.

5.1 Basic concept
Our covert channel exploits timing differences caused by
row conflicts. Sender and receiver occupy different rows
in the same bank as illustrated in Figure 5. The receiver
process continuously accesses a chosen physical address
in the DRAM and measures the average access time over
a few accesses. If the sender process now continuously

Row Buffer

Receiver Receiver
Receiver Receiver
Sender Sender

SenderSender

Figure 5: The sender occupies rows in a bank to trigger
row conflicts. The receiver occupies rows in the same
bank to observe these row conflicts.
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(a) Sender inactive on bank: sending a 0.
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(b) Sender active on bank: sending a 1.

Figure 6: Timing differences between active and non-
active sender (on one bank), measured on the Haswell i7
test system.

accesses a different address in the same bank but in a
different row, a row conflict occurs. This leads to higher
average access times in the receiver process. Bits can be
transmitted by switching the activity of the sender pro-
cess in the targeted bank on and off. This timing differ-
ence is illustrated in Figure 6, an exemplary transmission
is shown in Figure 7. The receiver process distinguishes
the two values based on the mean access time. We assign
a logic value of 0 to low access times (the sender is inac-
tive) and a value of 1 to high access times (the sender is
active).

Each (CPU, channel, DIMM, rank, bank) tuple can
be used as a separate transmission channel. However,
a high number of parallel channels leads to increased
noise. Also, there is a strict limit on the usable bank par-
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Table 2: Reverse engineered DRAM mapping on all platforms and configurations we analyzed via physical probing
or via software analysis. These tables list the bits of the physical address that are XORed. For instance, for the entry
(13, 17) we have a13 ⊕a17.

(a) DDR3

CPU Ch. DIMM/Ch. BA0 BA1 BA2 Rank DIMM Channel

Sandy Bridge 1 1 13, 17 14, 18 15, 19 16 - -
Sandy Bridge [23] 2 1 14, 18 15, 19 16, 20 17 - 6

Ivy Bridge/Haswell

1 1 13, 17 14, 18 16, 20 15, 19 - -
1 2 13, 18 14, 19 17, 21 16, 20 15 -
2 1 14, 18 15, 19 17, 21 16, 20 - 7, 8, 9, 12, 13, 18, 19
2 2 14, 19 15, 20 18, 22 17, 21 16 7, 8, 9, 12, 13, 18, 19

(b) DDR4

CPU Ch. DIMM/Ch. BG0 BG1 BA0 BA1 Rank CPU Channel

Skylake† 2 1 7, 14 15, 19 17, 21 18, 22 16, 20 - 8, 9, 12, 13, 18, 19
2x Haswell-EP 1 1 6, 22 19, 23 20, 24 21, 25 14 7, 17 -
(interleaved) 2 1 6, 23 20, 24 21, 25 22, 26 15 7, 17 8, 12, 14, 16, 18, 20, 22, 24, 26

2x Haswell-EP 1 1 6, 21 18, 22 19, 23 20, 24 13 - -
(non-interleaved) 2 1 6, 22 19, 23, 20, 24 21, 25 14 - 7, 12, 14, 16, 18, 20, 22, 24, 26

(c) LPDDR2,3,4

CPU Ch. BA0 BA1 BA2 Rank Channel

Qualcomm Snapdragon S4 Pro† 1 13 14 15 10 -
Samsung Exynos 5 Dual† 1 13 14 15 7 -

Qualcomm Snapdragon 800/820† 1 13 14 15 10 -
Samsung Exynos 7420† 2 14 15 16 8, 13 7, 12

† Software analysis only. Labeling of functions is based on results of other platforms.
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Figure 7: Covert channel transmission on one bank,
cross-CPU and cross-VM on a Haswell-EP server. The
time frame for one bit is 50µs.

allelism. Thus, optimal performance is achieved when
using only a subset of available tuples. Transmission
channels are unidirectional, but the direction can be cho-
sen for each one independently. Thus, two-way commu-
nication is possible.

To evaluate the performance of this new covert chan-
nel, we created a proof-of-concept implementation. We
restrict ourselves to unidirectional communication, i.e.,
there is one dedicated sender and one dedicated receiver.

The memory access time is measured using rdtsc.
The memory accesses are performed using volatile

pointers. In order to cause a DRAM access for each
request, data has to be flushed from the cache using
clflush.

Determining channel, rank, and bank address. In an
agreement phase, all parties need to agree on the set
of (channel, DIMM, rank, bank) tuples that are used
for communication. This set needs to be chosen only
once, all subsequent communication can use the same
set. Next, both sender and receiver need to find at least
one address in their respective address space for each
tuple. Note that some operating systems allow unpriv-
ileged resolution of virtual to physical addresses. In this
case, finding correct addresses is trivial.

However, on Linux, which we used on our testing
setup, unprivileged address resolution is not possible.
Thus, we use the following approach. As observed in
previous work [3, 4], system libraries and the operating
system assign 2 MB pages for arrays which are signifi-
cantly larger than 2 MB. On these pages, the 21 lowest
bits of the virtual address and the physical address are

9
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identical. Depending on the hardware setup, these bits
can already be sufficient to fully determine bank, rank
and channel address. For this purpose, both processes
request a large array. The start of this array is not neces-
sarily aligned with a 2 MB border. Memory before such
a border is allocated using 4 KB pages. We skip to the
next 2 MB page border by choosing the next virtual ad-
dress having the 21 lowest bits set to zero.

On systems that also use higher bits, an attacker can
use the following approach, which we explain on the ex-
ample of the mapping shown in Figure 4b. There an at-
tacker cannot determine the BA2 bit by just using 2 MB
pages. Thus, the receiving process selects addresses with
chosen BA0, BA1, rank, and channel, but unknown BA2
bit. The sender now accesses addresses for both possibil-
ities of BA2, e.g., by toggling a17 between consecutive
reads. Thus, only each second access in the sending pro-
cess targets the correct bank. Yet, due to bank parallelism
this does not cause a notable performance decrease. Note
however that this approach might not work if the number
of unknown bank-address bits is too high.

In a virtualized environment, even a privileged at-
tacker is able to retrieve only the guest physical ad-
dress, which is further translated into the real physical
address by the memory management unit. However, if
the host system uses 1 GB pages for the second-level ad-
dress translation (to improve efficiency), then the lowest
30 bits of the guest physical address are identical to the
real physical address. Knowledge of these bits is suffi-
cient on all systems we analyzed to use the full DRAM
addressing functions.

Finally, the covert channel could also be built with-
out actually reconstructing the DRAM addressing func-
tions. Instead of determining the exact bank address, it
can rely solely on the same-bank sets retrieved in Sec-
tion 4.3. In an initialization phase, both sender and re-
ceiver perform the timing analysis and use it to build sets
of same-bank addresses. Subsequently, the communicat-
ing parties need to synchronize their sets, i.e., they need
to agree on which of them is used for transmission. This
is done by sending predefined patterns over the channel.
After that, the channel is ready for transmission. Thus,
it can be established without having any information on
the mapping function nor on the physical addresses.

Synchronization. In our proof-of-concept implementa-
tion, one set of bits (a data block) is transmitted for
a fixed time span which is agreed upon before starting
communication. Decreasing this period increases the raw
bitrate, but it also increases the error rate, as shown in
Figure 8.

For synchronizing the start of these blocks we em-
ploy two different mechanisms. If sender and receiver
run natively, we use the wall clock as means of synchro-
nization. Here blocks start at fixed points in time. If,

however, sender and receiver run in two different VMs,
then a common (or perfectly synchronized) wall clock is
typically not available. In this case, the sender uses one
of the transmission channels to transmit a clock signal
which toggles at the beginning of each block. The re-
ceiver then recovers this clock and can thus synchronize
with the sender.

We employ multiple threads for both the sender and re-
ceiver processes to achieve optimal usage of the memory
bus. Thus, memory accesses are performed in parallel,
increasing the performance of the covert channel.

5.2 Evaluation

We evaluated the performance of our covert-channel im-
plementation on two systems. First, we performed tests
on a standard desktop PC featuring an Intel i7-4790 CPU
with Haswell microarchitecture. It was equipped with 2
Kingston DDR3 KVR16N11/8 dual-rank 8 GB DIMMs
in dual-channel configuration. The system was mostly
idle during the tests, i.e., there were no other tasks caus-
ing significant load on the system. The DRAM clock was
set to its default of 800 MHz (DDR3-1600).

Furthermore, we also tested the capability of cross-
CPU transmission on a server system. Our setup has
two Intel Xeon E5-2630 v3 (Haswell-EP microarchi-
tecture). It was equipped with a total of 4 Samsung
M393A2G40DB0-CPB DDR4 registered ECC DIMMs.
Each CPU was connected to two DIMMs in dual-channel
configuration and NUMA was set to interleaved mode.
The DRAM frequency was set to its maximum supported
value (DDR4-1866).

For both systems, we evaluated the performance in
both a native scenario, i.e., both processes run natively,
and in a cross-VM scenario. We transmit 8 bits per block
(use 8 (CPU, channel, DIMM, rank, bank) tuples) in the
covert channel and run 2 threads in both the sender and
the receiver process. Every thread is scheduled to run on
different CPU cores, and in the case of the Xeon system,
sender and receiver run on different physical CPUs.

We tested our implementation with a large range of
measurement intervals. For each one, we measure the
raw channel capacity and the bit error probability. While
the raw channel capacity increases proportionally to the
reduction of the measurement time, the bit error rate in-
creases significantly if the measurement time is too short.
In order to find the best transmission rate, we use the
channel capacity as metric. When using the binary sym-
metric channel model, this metric is computed by multi-
plying the raw bitrate with 1−H(e), with e the bit error
probability and H(e) =−e · log2(e)−(1−e) · log2(1−e)
the binary entropy function.

Figure 8 shows the error rate varying depending on
the raw bitrate for the case that both sender and receiver

10



USENIX Association  25th USENIX Security Symposium 575

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

Raw bitrate [Mbps]

B
it

er
ro

rp
ro

ba
bi

lit
y Bit error probability Capacity

0

1

2

C
ap

ac
ity

[M
bp

s]

(a) Desktop setup (Haswell)
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(b) Server setup, cross-CPU (Haswell-EP)

Figure 8: Performance of our covert channel implemen-
tation (native).

run natively. On our desktop setup (Figure 8a), the error
probability stays below 1% for bitrates of up to 2 Mbps.
The channel capacity reaches up to 2.1 Mbps (raw bitrate
of 2.4 Mbps, error probability of 1.8%). Beyond this
peak, the increasing error probability causes a decrease
in the effective capacity. On our server setup (Figure 8b)
the cross-CPU communication achieves 1.2 Mbps with a
1% error rate. The maximum capacity is 1.6 Mbps (raw
2.6 Mbps, 8.7% error probability).

For the cross-core cross-VM scenario, we deployed
two VMs which were configured to use 1 GB pages for
second-stage address translation. We reach a maximum
capacity of 309 kbps (raw 411 kbps, 4.1% error probabil-
ity) on our desktop system. The server setup (cross-CPU
cross-VM) performs much better, we achieved a bitrate
of 596 kbps with an error probability of just 0.4%.

5.3 Comparison with state of the art

We compare the bitrate of our DRAM covert chan-
nel with the normalized implementation of three cache
covert channels by Gruss et al. [5]. For an error rate that
is less than 1%, the covert channel using Prime+Probe
obtains 536 Kbps, the one using Flush+Reload 2.3 Mbps
and the one using Flush+Flush 3.8 Mbps. With a ca-
pacity of up to 2 Mbps, our covert channel is within the
same order of magnitude of current cache-based chan-
nels. However, unlike Flush+Reload and Flush+Flush, it

does not require shared memory. Moreover, in contrast
to our attack, these cache covert channels do not allow
cross-CPU communication.

The work of Irazoqui et al. [11] focuses on cross-CPU
cache-based side-channel attacks. They did not imple-
ment a covert channel, thus we cannot compare our per-
formance with their cache attack. However, their ap-
proach also requires shared memory and thus it would
not work in our attack setting.

The covert channel by Xiao et al. [26] using memory
deduplication achieves up to 90 bps. However, due to
security concerns, memory deduplication has been dis-
abled in many cloud environments. The covert channel
of Wu et al. [25] using the memory bus achieves 746 bps
with error correction. Our covert channel is therefore
three to four orders of magnitude faster than state-of-the-
art memory-based covert channels.

6 A low-noise cross-CPU side channel

In this section, we present a second DRAMA attack,
a highly accurate side-channel attack using DRAM ad-
dressing information. We again exploit the row buffer
and its behavior similar to a directly-mapped cache. In
this attack, the spy and the victim can run on sepa-
rate CPUs and do not share memory, i.e., no access
to shared libraries and no page deduplication between
VMs. We mainly consider a local attack scenario where
Flush+Reload cache attacks are not applicable due to
the lack of shared memory. However, our side-channel
attacks can also be applied in a cloud scenario where
multiple users on a server and one malicious user spies
on other users through this side channel. The side
channel achieves a timing accuracy that is compara-
ble to Flush+Reload and a higher spatial accuracy than
Prime+Probe. Thus, it can be used as a highly accurate
alternative to Prime+Probe cache attacks in cross-core
scenarios without shared memory.

6.1 Basic concept
In case of the covert channel, an active sender caused
row conflicts. In the side-channel attack, we infer the
activity of a victim process by detecting row hits and row
conflicts following our definitions from Section 3. For
the attack to succeed, spy and victim need to have access
to the same row in a bank, as illustrated in Figure 9. This
is possible without shared memory due to the DRAM
addressing functions.

Depending on the addressing functions, a single 4 KB
page can map to multiple DRAM rows. As illustrated
in Figure 10, in our Haswell-EP system the contents
of a page are split over 8 DRAM rows (with the same
row index, but different bank address). Conversely, a

11



576 25th USENIX Security Symposium USENIX Association

Row Buffer
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Figure 9: Victim and spy have memory allocated in the
same DRAM row. By accessing this memory, the spy
can determine whether the victim just accessed it.

DRAM row contains content of at least two 4 KB pages,
as the typical row size is 8 KB. More specifically, in our
Haswell-EP setup a single row stores content for 16 dif-
ferent 4 KB pages, as again shown in Figure 10. The
amount of memory mapping from one page to one spe-
cific row, e.g., 512 bytes in the previous case, is the
achievable spatial accuracy of our attack. If none of
the DRAM addressing functions uses low address bits
(a0 − a11), the spatial accuracy is 4 KB, which is the
worst case. However, if DRAM addressing functions
(channel, BG0, CPU, etc.) use low address bits, a better
accuracy can be achieved, such as the 512 B for the server
setup. On systems where 6 or more low address bits are
used, the spatial accuracy of the attack is 64 B and thus
as accurate as a Flush+Reload cache side-channel attack.

Assuming that an attacker occupies at least one other
4 KB page that maps (in part) to the same bank and row,
the attacker has established a situation as illustrated in
Figure 9.

To run the side-channel attack on a private memory ad-
dress t in a victim process, the attacker allocates a mem-
ory address p that maps to the same bank and the same
row as the target address t. As shown in Figure 10, al-
though t and p map to the same DRAM row, they belong
to different 4 KB pages (i.e., no shared memory). The
attacker also allocates a row conflict address p̄ that maps
to the same bank but to a different row.

The side-channel attack then works in three steps:
1. Access the row conflict address p̄
2. Wait for the victim to compute
3. Measure the access time on the targeted address p

If the measured timing is below a row-hit threshold (cf.
the highlighted “row hit” region in Figure 1), the victim
has just accessed t or another address in the target row.
Thus, we can accurately determine when a specific non-
shared memory location is accessed by a process running
on another core or CPU. As p and p̄ are on separate pri-
vate 4 KB pages, they will not be prefetched and we can
measure row hits without any false positives. By allocat-
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Figure 10: Mapping between a 4 KB page and an 8 KB
DRAM row in the Haswell-EP setup. Banks are num-
bered 0− 7, pages are numbered A− P. Every eighth
64-byte region of a 4 KB page maps to the same bank
in DRAM. In total 8 out of 64 regions (= 512B) map to
the same bank. Thus, the memory of each row is divided
among 16 different pages (A−P) that use memory from
the same row. Occupying one of the pages B−P is suffi-
cient to spy on the eight 64-byte regions of page A in the
same bank.

ing all but one of the pages that map to a row, the attacker
maximizes the spatial accuracy.

Based on this attack principle, we build a fully auto-
mated template attack [6] that triggers an event in the
victim process running on the other core or CPU (e.g.,
by sending requests to a web interface or triggering user-
interface events). For this attack we do not need to re-
construct the full addressing functions nor determine the
exact bank address. Instead, we exploit the timing dif-
ference between row hits and row conflicts as shown in
Figure 1.

To perform a DRAMA template attack, the attacker al-
locates a large fraction of memory, ideally in 4 KB pages.
This ensures that some of the allocated pages are placed
in a row together with pages used by the victim. The
attacker then profiles the entire allocated memory and
records the row-hit ratio for each address.

False positive detections are eliminated by running the
profiling phase with different events. If an address has a
high row-hit ratio for a single event, it can be used to
monitor that event in the exploitation phase. After such
an address has been found, all other remaining mem-
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ory pages will be released and the exploitation phase is
started.

6.2 Evaluation

We evaluated the performance of our side-channel attack
in several tests. These tests were performed on a dual-
core laptop with an Ivy Bridge Intel i5-3230M CPU with
2 Samsung DDR3-1600 dual-rank 4 GB DIMMs in dual-
channel configuration.

The first test was a DRAMA template attack. The at-
tack ran without any shared memory in an unprivileged
user program. In this template attack we profiled ac-
cess times on a private memory buffer while triggering
keystrokes in the Firefox address bar. Figure 11 shows
the template attack profile with and without keystrokes
being triggered. While scanning a total of 7 GB of al-
located memory, we found 1195 addresses that showed
at least one row hit during the tests. 59 of these ad-
dresses had row hits independent of the event (false pos-
itives), i.e., these 59 addresses cannot be used to monitor
keystroke events. For the remaining 1136 addresses we
only had row hits after triggering a keystroke in the Fire-
fox address bar. Out of these addresses, 360 addresses
had more than 20 row hits. Any of these 360 addresses
can be used to monitor keystrokes reliably. The time to
find an exploitable address varies between a few seconds
and multiple minutes. Sometimes the profiling phase
does not find any exploitable address, for instance if there
is no memory in one row with victim memory. In this
case the attacker has to restart the profiling phase.

After automatically switching to the exploitation
phase we are able to monitor the exact timestamp of ev-
ery keystroke in the address bar. We verified empirically
that row hits can be measured on the found addresses
after keystrokes by triggering keystrokes by hand. Fig-
ure 12 shows an access time trace for an address found in
a DRAMA template attack, while typing in the Firefox
address bar. For every key the user presses, a low access
time is measured. We found this address after less than
2 seconds. Over 80 seconds we measured no false posi-
tive row hits and when pressing 40 keys we measured no
false negatives. During this test the system was entirely
idle apart from the attack and the user typing in Firefox.
In a real attack, noise would introduce false negatives.

Comparison with cache template attacks. To compare
DRAMA template attacks with cache template attacks,
we performed two attacks on gedit. The first uses the re-
sult from a cache template attack in a DRAMA exploita-
tion phase. The second is a modified cache template at-
tack that uses the DRAMA side channel. Both attacks
use shared memory to be able to compare them with
cache template attacks. However, the DRAMA side-
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Figure 11: A DRAM template of the system memory
with and without triggering keystrokes in the Firefox ad-
dress bar. 1136 sets had row hits after a keystroke, 59 sets
had false positive row hits (row hits without a keystroke),
measured on our Ivy Bridge i5 test system.
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Figure 12: Exploitation phase on non-shared memory
in a DRAMA template attack on our Ivy Bridge i5 test
system. A low access time is measured when the user
presses a key in the Firefox address bar. The typing gaps
illustrate the low noise level.

channel attack takes no advantage of shared memory in
any attack.

In the first attack on gedit, we target tab open and
tab close events. In an experiment over 120 seconds we
opened a new tab and closed the new tab, each 50 times.
The exploitable address in the shared library was found
in a cache template attack. We computed the physical
address and thus bank and row of the exploitable address
using privileged operating services. Then we allocated
large arrays to obtain memory that maps to the same row
(and bank). This allows us to perform an attack that has
only minimal differences to a Flush+Reload attack.

During this attack, our spy tool detected 1 false pos-
itive row hit and 1 false negative row hit. Running
stress -m 1 in parallel, which allocates and accesses
large memory buffers, causes a high number of cache
misses, but did not introduce a significant amount of
noise. In this experiment the spy tool detected no false
positive row hits and 4 false negative row hits. Running
stress -m 2 in parallel (i.e., the attacker’s core is un-
der stress) made any measurements impossible. While
no false positive detections occurred, only 9 events were

13



578 25th USENIX Security Symposium USENIX Association

1 2 3 4 5

·105

0

20

40

60

Address

N
um

be
ro

fc
as

es
Row hits Cache hits

Figure 13: Comparison of a cache hits and row hits over
the virtual memory where the gedit binary is mapped,
measured on our Ivy Bridge i5 test system.

correctly detected. Thus, our attack is susceptible to
noise especially if the attacker only gets a fraction of
CPU time on its core.

In the second attack we compared the cache side chan-
nel and the DRAM side channel in a template attack
on keystrokes in gedit. Figure 13 shows the number of
cache hits and row hits over the virtual memory where
the gedit binary is mapped. Row hits occur in spatial
proximity to the cache hits and at shifted offsets due to
the DRAM address mappings.

6.3 Comparison with state of the art

We now compare DRAMA side-channel attacks with
same-CPU cache attacks such as Flush+Reload and
Prime+Probe, as well as with cross-CPU cache at-
tacks [11]. Our attack is the first to enable monitoring
non-shared memory cross-CPU with a reasonably high
spatial accuracy and a timing accuracy that is comparable
to Flush+Reload. This allows the development of new at-
tacks on programs using dynamically allocated or private
memory.

The spatial accuracy of the DRAMA side-channel at-
tack is significantly higher than that of a Prime+Probe
attack, which also does not necessitate shared memory,
and only slightly lower than that of a Flush+Reload at-
tack in most cases. Our Ivy Bridge i5 system has 8 GB
DRAM and a 3 MB L3 cache that is organized in 2 cache
slices with each 2048 cache sets. Thus, in a Prime+Probe
attack 32768 memory lines map to the same cache set,
whereas in our DRAMA side-channel attack, on the
same system, only 32 memory lines map to the same
row. The spatial accuracy strongly depends on the sys-
tem. On our Haswell-EP system only 8 memory lines
map to the same row whereas still 32768 memory lines
map to the same cache set. Thus, on the Haswell-EP sys-
tem the advantage of DRAMA side-channel attacks over
Prime+Probe is even more significant.

To allocate memory lines that are in the same row as
victim memory lines, it is necessary to allocate signifi-
cantly larger memory buffers than in a cache attack like
Prime+Probe. This is a clear disadvantage of DRAMA
side-channel attacks. However, DRAMA side-channel
attacks have a very low probability of false positive row
hit detections, whereas Prime+Probe is highly suscep-
tible to noise. Due to this noise, monitoring singular
events using Prime+Probe is extremely difficult.

Irazoqui et al. [11] presented cache-based cross-CPU
side-channel attacks. However, their work requires
shared memory. Our approach works without shared
memory. Not only does this allow cross-CPU attacks in
highly restricted environments, it also allows to perform
a new kind of cross-core attack within one system.

7 Improving attacks

In this section, we describe how the DRAM addressing
functions can be used to improve the accuracy, efficiency,
and success rate of existing attacks.

Flush+Reload. The first step when performing
Flush+Reload attacks is to compute a cache-hit thresh-
old, based on a histogram of cache hits and cache misses
(memory accesses). However, as we have shown (cf.
Figure 1) row hits have a slightly lower access time
than row conflicts. To get the best performance in a
Flush+Reload attack it is necessary to take row hits and
conflicts into account. Otherwise, if a process accesses
any memory location in the same row, a row hit will be
misclassified as a cache hit. This introduces a significant
amount of noise as the spatial accuracy of a cache hit
is 64 bytes and the one of a row hit can be as low as
8 KB, depending on how actively the corresponding
pages of the row are used. We found that even after a
call to sched yield a row hit is still observed in 2%
of the cases on a Linux system that is mostly idle. In a
Flush+Reload attack the victim computes in parallel and
thus the probability then is even higher than 2%. This
introduces a significant amount of noise especially for
Flush+Reload attacks on low-frequency events. Thus,
the accuracy of Flush+Reload attacks can be improved
significantly taking row hits into account for the cache
hit threshold computation.

Rowhammer. In a Rowhammer attack, an adversary
tries to trigger bit flips in DRAM by provoking a high
number of row switches. The success rate and efficiency
of this attack benefit greatly from knowing the DRAM
mapping, as we now demonstrate.

In order to cause row conflicts, one must alternately
access addresses belonging to the same bank, but differ-
ent row. The probability that 2 random addresses ful-
fill this criterion is 2−B, where B is the total number of
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bank-addressing bits (this includes all bits for channel,
rank, etc.). For instance, with the dual-channel DDR4
configuration shown in Figure 4c this probability is only
2−6 = 1/64. By hammering a larger set of addresses,
the probability of having at least two targeting the same
bank increases. However, so does the time in between
row switches, thus the success rate decreases.

The most efficient way of performing the Rowham-
mer attack is double-sided hammering. Here, one tries
to cause bit flips in row n by alternatingly accessing the
adjacent rows n−1 and n+1, which are most likely also
adjacent in physical memory. The most commonly ref-
erenced implementation of the Rowhammer attack, by
Seaborn and Dullien [24], performs double-sided ham-
mering by making assumptions on, e.g., the position of
the row-index bits. If these are not met, then their imple-
mentation does not find any bit flips. Also, it needs to test
multiple address combinations as it does not use knowl-
edge of the DRAM addressing functions. We tested
their implementation on a Skylake machine featuring
G.SKILL F4-3200C16D-16GTZB DDR4 memory at the
highest possible refresh interval, yet even after 4 days of
nonstop hammering, we did not detect any bit flips.

By using the DRAM addressing functions we can
immediately determine whether two addresses map to
the same bank. Also, we can very efficiently search
for pairs allowing double-sided hammering. After tak-
ing the reverse-engineered addressing functions into ac-
count, we successfully caused bit flips on the same Sky-
lake setup within minutes. Running the same attack on a
Crucial DDR4-2133 memory module running at the de-
fault refresh interval, we observed the first bit flip af-
ter 16 seconds and subsequently observed on average
one bit flip every 12 seconds. Although the LPDDR4
standard includes target row refresh (TRR) as an op-
tional countermeasure against the Rowhammer attack,
the DDR4 standard does not. Still, some manufactur-
ers include it in their products as a non-standard feature.
For both DDR4 and LPDDR4, both the memory con-
troller and the DRAM must support this feature in order
to provide any protection. To the best of our knowledge,
both our Haswell-EP test system and the Crucial DDR4-
2133 memory module, with Micron DRAM chips, sup-
port TRR [10, 17]. However, we are still able to repro-
ducibly trigger bit flips in this configuration.

8 Countermeasures

Defending against row buffer attacks is a difficult task.
Making the corresponding DRAM operations constant
time would introduce unacceptable performance degra-
dation. However, as long as the timing difference exists
and can be measured, the side channel cannot be closed.

Our attack implementations use the unprivileged
clflush instruction in order to cause a DRAM access
with every memory request. Thus, one countermeasure
might be to restrict said operation. However, this requires
architectural changes and an attacker can still use evic-
tion as a replacement. The additional memory accesses
caused by eviction could make our row-buffer covert
channel impractical. However, other attacks such as the
fully automated reverse engineering or our row-hit side-
channel attack are still possible. Restricting the rdtsc

instruction would also not prevent an attack as other tim-
ing sources can be used as replacement.

To prevent cross-VM attacks on multi-CPU cloud sys-
tems, the cloud provider could schedule each VM on a
dedicated physical CPU and only allow access to CPU-
local DRAM. This can be achieved by using a non-
interleaved NUMA configuration and assigning pages
to VMs carefully. This approach essentially splits a
multi-CPU machine into independent single-CPU sys-
tems, which leads to a loss of many of its advantages.

Saltaformaggio et al. [21] presented a countermeasure
to the memory bus-based covert channel of Wu et al..
It intercepts atomic instructions that are responsible for
this covert channel, so that only cores belonging to the
attacker’s VM are locked, instead of the whole machine.
This countermeasure is not effective against our attacks
as they do not rely on atomic instructions.

Finally, our attack could be detected due to the
high number of cache misses. However, it is unclear
whether it is possible to distinguish our attacks from non-
malicious applications.

9 Conclusion

In this paper, we presented two methods to reverse en-
gineer the mapping of physical memory addresses to
DRAM channels, ranks, and banks. One uses physical
probing of the memory bus, the other runs entirely in
software and is fully automated. We ran our method on
a wide range of architectures, including desktop, server,
and mobile platforms.

Based on the reverse-engineered functions, we demon-
strated DRAMA (DRAM addressing) attacks. This novel
class of attacks exploits the DRAM row buffer that is a
shared resource in single and multi-processor systems.
This allows our attacks to work in the most restrictive
environments, i.e., across processors and without any
shared memory. We built a covert channel with a ca-
pacity of 2 Mbps, which is three to four orders of mag-
nitude faster than memory-bus-based channels in the
same setting. We demonstrated a side-channel template
attack automatically locating and monitoring memory
accesses, e.g., user input, server requests. This side-
channel attack is as accurate as recent cache attacks like
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Flush+Reload, while requiring no shared memory be-
tween the victim and the spy. Finally, we show how to
use the reverse-engineered DRAM addressing functions
to improve existing attacks, such as Flush+Reload and
Rowhammer. Our work enables practical Rowhammer
attacks on DDR4.

We emphasize the importance of reverse engineering
microarchitectural components for security reasons. Be-
fore we reverse engineered the DRAM address mapping,
the DRAM row buffer was transparent to operating sys-
tem and software. Only by reverse engineering we made
this shared resource visible and were able to identify it
as a powerful side channel.
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